Channelpedia

PubMed 23716582


Referenced in: none

Automatically associated channels: SK2 , SK3 , Slo1



Title: Chronic hypoxia inhibits pregnancy-induced upregulation of SKCa channel expression and function in uterine arteries.

Authors: Ronghui Zhu, Xiang-Qun Hu, Daliao Xiao, Shumei Yang, Sean M Wilson, Lawrence D Longo, Lubo Zhang

Journal, date & volume: Hypertension, 2013 Aug , 62, 367-74

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/23716582


Abstract
Small-conductance Ca(2+)-activated K(+) (SKCa) channels are crucial in regulating vascular tone and blood pressure. The present study tested the hypothesis that SKCa channels play an important role in uterine vascular adaptation in pregnancy, which is inhibited by chronic hypoxia during gestation. Uterine arteries were isolated from nonpregnant and near-term pregnant sheep maintained at sea level (≈300 m) or exposed to high-altitude (3801 m) hypoxia for 110 days. Immunohistochemistry revealed the presence of SKCa channels type 2 (SK2) and type 3 (SK3) in both smooth muscles and endothelium of uterine arteries. The expression of SK2 and SK3 channels was significantly increased during pregnancy, which was inhibited by chronic hypoxia. In normoxic animals, both SKCa channel opener NS309 and a large-conductance (BKCa) channel opener NS1619 relaxed norepinephrine-contracted uterine arteries in pregnant but not nonpregnant sheep. These relaxations were inhibited by selective SKCa and BKCa channel blockers, respectively. NS309-induced relaxation was largely endothelium-independent. In high-altitude hypoxic animals, neither NS1691 nor NS309 produced significant relaxation of uterine arteries in either nonpregnant or pregnant sheep. Similarly, the role of SKCa channels in regulating the myogenic reactivity of uterine arteries in pregnant animals was abrogated by chronic hypoxia. Accordingly, the enhanced SKCa channel activity in uterine arterial myocytes of pregnant animals was ablated by chronic hypoxia. The findings suggest a novel mechanism of SKCa channels in regulating myogenic adaptation of uterine arteries in pregnancy and in the maladaptation of uteroplacental circulation caused by chronic hypoxia during gestation.