PubMed 23966220
Referenced in: none
Automatically associated channels: ClC2 , ClC4
Title: Photostimulation of Whole-Cell Conductance in Primary Rat Neocortical Astrocytes Mediated by Organic Semiconducting Thin Films.
Authors: Valentina Benfenati, Nicola Martino, Maria Rosa Antognazza, Assunta Pistone, Stefano Toffanin, Stefano Ferroni, Guglielmo Lanzani, Michele Muccini
Journal, date & volume: Adv Healthc Mater, 2013 Aug 21 , ,
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/23966220
Abstract
Astroglial ion channels are fundamental molecular targets in the study of brain physiology and pathophysiology. Novel tools and devices intended for stimulation and control of astrocytes ion channel activity are therefore highly desirable. The study of the interactions between astrocytes and biomaterials is also essential to control and minimize reactive astrogliosis, in view of the development of implantable functional devices. Here, the growth of rat primary neocortical astrocytes on the top of a light sensitive, organic polymer film is reported; by means of patch-clamp analyses, the effect of the visible light stimulation on membrane conductance is then determined. Photoexcitation of the active material causes a significant depolarization of the astroglial resting membrane potential: the effect is associated to an increase in whole-cell conductance at negative potentials. The magnitude of the evoked inward current density is proportional to the illumination intensity. Biophysical and pharmacological characterization suggests that the ion channel mediating the photo-transduction mechanism is a chloride channel, the ClC-2 channel. These results open interesting perspectives for the selective manipulation of astrocyte bioelectrical activity by non-invasive, label-free, organic-based, photostimulation approaches.