PubMed 23804213
Referenced in: none
Automatically associated channels: Cav1.2
Title: Fibroblast Growth Factor Homologous Factors Modulate Cardiac Calcium Channels.
Authors: Jessica Amenta Hennessey, Eric Q Wei, Geoffrey S Pitt
Journal, date & volume: Circ. Res., 2013 Jun 26 , ,
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/23804213
Abstract
Fibroblast growth factor (FGF) homologous factors (FHFs; FGF11-14) are intracellular modulators of voltage-gated Na+ channels, but their cellular distribution in cardiomyocytes indicated that they performed other functions.We aimed to uncover novel roles for FHFs in cardiomyocytes, starting with a proteomic approach to identify novel interacting proteins.Affinity purification of FGF13 from rodent ventricular lysates followed by mass spectroscopy revealed an interaction with junctophilin-2, a protein that organizes the close apposition of the L-type Ca2+ channel CaV1.2 and the ryanodine receptor 2 in the dyad. Immunocytochemical analysis revealed that overall T-tubule structure and localization of ryanodine receptor 2 were unaffected by FGF13 knockdown in adult ventricular cardiomyocytes but localization of CaV1.2 was affected. FGF13 knockdown decreased CaV1.2 current density and reduced the amount of CaV1.2 at the surface as a result of aberrant localization of the channels. CaV1.2 current density and channel localization were rescued by expression of an shRNA-insensitive FGF13, indicating a specific role for FGF13. Consistent with these newly discovered effects on CaV1.2, we demonstrated that FGF13 also regulated Ca(2+)-induced Ca2+ release, indicated by a smaller Ca2+ transient after FGF13 knockdown. Furthermore, FGF13 knockdown caused a profound decrease in the cardiac action potential half-width.This study demonstrates that FHFs not only are potent modulators of voltage-gated Na+ channels but also affect Ca2+ channels and their function. We predict that FHF loss-of-function mutations would adversely affect currents through both Na+ and Ca2+ channels, suggesting that FHFs may be arrhythmogenic loci, leading to arrhythmias through a novel, dual-ion channel mechanism.