PubMed 21538141

Referenced in Channelpedia wiki pages of: none

Automatically associated channels: SK2

Title: Stochastic amplification of calcium-activated potassium currents in Ca2+ microdomains.

Authors: David Arthur Stanley, Berj L Bardakjian, Mark L Spano, William L Ditto

Journal, date & volume: J Comput Neurosci, 2011 Nov , 31, 647-66

PubMed link:

Small conductance (SK) calcium-activated potassium channels are found in many tissues throughout the body and open in response to elevations in intracellular calcium. In hippocampal neurons, SK channels are spatially co-localized with L-Type calcium channels. Due to the restriction of calcium transients into microdomains, only a limited number of L-Type Ca(2+) channels can activate SK and, thus, stochastic gating becomes relevant. Using a stochastic model with calcium microdomains, we predict that intracellular Ca(2+) fluctuations resulting from Ca(2+) channel gating can increase SK2 subthreshold activity by 1-2 orders of magnitude. This effectively reduces the value of the Hill coefficient. To explain the underlying mechanism, we show how short, high-amplitude calcium pulses associated with stochastic gating of calcium channels are much more effective at activating SK2 channels than the steady calcium signal produced by a deterministic simulation. This stochastic amplification results from two factors: first, a supralinear rise in the SK2 channel's steady-state activation curve at low calcium levels and, second, a momentary reduction in the channel's time constant during the calcium pulse, causing the channel to approach its steady-state activation value much faster than it decays. Stochastic amplification can potentially explain subthreshold SK2 activation in unified models of both sub- and suprathreshold regimes. Furthermore, we expect it to be a general phenomenon relevant to many proteins that are activated nonlinearly by stochastic ligand release.