Channelpedia

PubMed 22183257


Referenced in Channelpedia wiki pages of: none

Automatically associated channels: TRP , TRPM , TRPM7



Title: Silencing TRPM7 mimics the effects of magnesium deficiency in human microvascular endothelial cells.

Authors: Erika Baldoli, Jeanette A M Maier

Journal, date & volume: Angiogenesis, 2012 Mar , 15, 47-57

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/22183257


Abstract
Evidence has accumulated to suggest that magnesium might play a role in controlling angiogenesis. Since microvascular endothelial cells are protagonists in this process, we investigated the behavior of these cells cultured in low extracellular magnesium or silenced for its transporter Transient Receptor Potential Melastatin (TRPM)7, essential for cellular magnesium homeostasis. In particular, we focused on some crucial steps of the angiogenic process, i.e. proliferation, migration, protease production and organization in tridimensional structures. Silencing TRPM7 mimics the effects of low extracellular magnesium on human microvascular endothelial cells (HMEC). Indeed, while no effects were observed on the production of metalloproteases and on tridimensional organization on matrigel, both magnesium deficiency and silencing of TRPM7 impair cell migration and inhibit growth by arresting the cells in the G0/G1 and G2/M phases of the cell cycle. Since low extracellular magnesium markedly decreases TRPM7 in HMEC, we suggest that TRPM7 downregulation might mediate low magnesium-induced inhibition of cell growth and migration. Human endothelial cells from the umbilical vein are growth inhibited by low magnesium and growth stimulated after TRPM7 silencing. An impairment of ERK phosphorylation in HMEC silencing TRPM7 is responsible, in part, for the different proliferative behavior of these two cell types. We broadened our studies also to endothelial colony-forming cells and found that they are sensitive to fluctuations of the concentrations of extracellular magnesium, while their proliferation rate is not modulated by TRPM7 silencing. Our results point to magnesium and TRPM7 as a modulators of the angiogenic phenotype of microvascular endothelial cells.