Channelpedia

PubMed 21996372


Referenced in Channelpedia wiki pages of: none

Automatically associated channels: SK1 , TRP , TRPV , TRPV4



Title: Characterization of transient receptor potential vanilloid channel 4 (TRPV4) in human corneal endothelial cells.

Authors: Stefan Mergler, Monika Valtink, Katrin Taetz, Monika Sahlmüller, Gabriele Fels, Peter S Reinach, Katrin Engelmann, Uwe Pleyer

Journal, date & volume: Exp. Eye Res., 2011 Nov , 93, 710-9

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/21996372


Abstract
The transient receptor potential vanilloid 4 (TRPV4) is a Ca(2+)-and Mg(2+) permeable cation channel that might be a cellular osmosensor since it is activated upon hypotonic cell swelling. TRPV4 is also thermosensitive and responds to moderate heat (from 24 to 27 °C) as well as to phorbol esters (4α-PDD) and several endogenous substances including arachidonic acid (AA), the endocannabinoids anandamide and 2-AG, and cytochrome P-450 metabolites of AA, such as epoxyeicosatrienoic acids. The resulting Ca(2+) influx occurring in response to swelling induces regulatory volume decrease (RVD) behavior. As regulation of cell volume is essential for corneal endothelial function, we determined whether human corneal endothelial cells have functional TRPV4 channel activity. RT-PCR identified TRPV4 gene expression in the HCEC-12 cell line as well as two clonal daughter cell lines (HCEC-H9C1, HCEC-B4G12). [Ca(2+)](i) transients were monitored in fura-2 loaded cells. Nonselective cation channel currents were recorded in the whole-cell mode of the planar patch-clamp technique. TRPV4 mRNA was found in HCEC-12 and the clonal daughter cell lines. TRPV4 channel agonists (4α-PDD and GSK1016790A; both 5 μmol/l) as well as moderate heat (<40 °C) elicited [Ca(2+)](i) transients. Hypotonicity increased [Ca(2+)](i) and nonselective cation channel currents in HCEC-12 cells. There is functional TRPV4 expression in HCEC-12 and in its clonal daughter cell lines based on Ca(2+) transients and underlying currents induced by known activators of this channel.