PubMed 22308469

Referenced in Channelpedia wiki pages of: none

Automatically associated channels: Cav2.2 , Slo1

Title: Asynchronous Ca2+ current conducted by voltage-gated Ca2+ (CaV)-2.1 and CaV2.2 channels and its implications for asynchronous neurotransmitter release.

Authors: Alexandra P Few, Evanthia Nanou, Hirofumi Watari, Jane M Sullivan, Todd Scheuer, William A Catterall

Journal, date & volume: Proc. Natl. Acad. Sci. U.S.A., 2012 Feb 14 , 109, E452-60

PubMed link:

We have identified an asynchronously activated Ca(2+) current through voltage-gated Ca(2+) (Ca(V))-2.1 and Ca(V)2.2 channels, which conduct P/Q- and N-type Ca(2+) currents that initiate neurotransmitter release. In nonneuronal cells expressing Ca(V)2.1 or Ca(V)2.2 channels and in hippocampal neurons, prolonged Ca(2+) entry activates a Ca(2+) current, I(Async), which is observed on repolarization and decays slowly with a half-time of 150-300 ms. I(Async) is not observed after L-type Ca(2+) currents of similar size conducted by Ca(V)1.2 channels. I(Async) is Ca(2+)-selective, and it is unaffected by changes in Na(+), K(+), Cl(-), or H(+) or by inhibitors of a broad range of ion channels. During trains of repetitive depolarizations, I(Async) increases in a pulse-wise manner, providing Ca(2+) entry that persists between depolarizations. In single-cultured hippocampal neurons, trains of depolarizations evoke excitatory postsynaptic currents that show facilitation followed by depression accompanied by asynchronous postsynaptic currents that increase steadily during the train in parallel with I(Async). I(Async) is much larger for slowly inactivating Ca(V)2.1 channels containing β(2a)-subunits than for rapidly inactivating channels containing β(1b)-subunits. I(Async) requires global rises in intracellular Ca(2+), because it is blocked when Ca(2+) is chelated by 10 mM EGTA in the patch pipette. Neither mutations that prevent Ca(2+) binding to calmodulin nor mutations that prevent calmodulin regulation of Ca(V)2.1 block I(Async). The rise of I(Async) during trains of stimuli, its decay after repolarization, its dependence on global increases of Ca(2+), and its enhancement by β(2a)-subunits all resemble asynchronous release, suggesting that I(Async) is a Ca(2+) source for asynchronous neurotransmission.