PubMed 20238058

Referenced in Channelpedia wiki pages of: none

Automatically associated channels: Cav1.4

Title: Congenital stationary night blindness in mice - a tale of two Cacna1f mutants.

Authors: N Lodha, S Bonfield, N C Orton, C J Doering, J E McRory, S C Mema, R Rehak, Y Sauvé, R Tobias, W K Stell, N T Bech-Hansen

Journal, date & volume: Adv. Exp. Med. Biol., 2010 , 664, 549-58

PubMed link:

Mutations in CACNA1F, which encodes the Ca(v)1.4 subunit of a voltage-gated L-type calcium channel, cause X-linked incomplete congenital stationary night blindness (CSNB2), a condition of defective retinal neurotransmission which results in night blindness, reduced visual acuity, and diminished ERG b-wave. We have characterized two putative murine CSNB2 models: an engineered null-mutant, with a stop codon (G305X); and a spontaneous mutant with an ETn insertion in intron 2 of Cacna1f (nob2).Cacna1f ( G305X ): Adults were characterized by visual function (photopic optokinetic response, OKR); gene expression (microarray) and by cell death (TUNEL) and synaptic development (TEM). Cacna1f ( nob2 ): Adults were characterized by properties of Cacna1f mRNA (cloning and sequencing) and expressed protein (immunoblotting, electrophysiology, filamin [cytoskeletal protein] binding), and OKR.The null mutation in Cacna1f ( G305X ) mice caused loss of cone cell ribbons, failure of OPL synaptogenesis, ERG b-wave and absence of OKR. In Cacna1f ( nob2 ) mice alternative ETn splicing produced ~90% Cacna1f mRNA having a stop codon, but ~10% mRNA encoding a complete polypeptide. Cacna1f ( nob2 ) mice had normal OKR, and alternatively-spliced complete protein had WT channel properties, but alternative ETn splicing abolished N-terminal protein binding to filamin.Ca(v)1.4 plays a key role in photoreceptor synaptogenesis and synaptic function in mouse retina. Cacna1f ( G305X ) is a true knockout model for human CSNB2, with prominent defects in cone and rod function. Cacna1f ( nob2 ) is an incomplete knockout model for CSNB2, because alternative splicing in an ETn element leads to some full-length Ca(v)1.4 protein, and some cones surviving to drive photopic visual responses.