Channelpedia

PubMed 21411724


Referenced in: none

Automatically associated channels: Kir2.1



Title: Endothelial progenitor cells functionally express inward rectifier potassium channels.

Authors: Sung-Soo Jang, Jonghanne Park, Sung Won Hur, Yun Hwa Hong, Jin Hur, Jong Hee Chae, Seung Ki Kim, Jun Kim, Hyo-Soo Kim, Sang Jeong Kim

Journal, date & volume: Am. J. Physiol., Cell Physiol., 2011 Jul , 301, C150-61

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/21411724


Abstract
Since the first isolation of endothelial progenitor cells (EPCs) from human peripheral blood in 1997, many researchers have conducted studies to understand the characteristics and therapeutic effects of EPCs in vascular disease models. Nevertheless, the electrophysiological properties of EPCs have yet to be clearly elucidated. The inward rectifier potassium channel (Kir) performs a major role in controlling the membrane potential and cellular events. Here, via the whole cell patch-clamp technique, we found inwardly rectifying currents in EPCs and that these currents were inhibited by Ba(2+) (100 μM) and Cs(+) (1 mM), known as Kir blockers, in a dose-dependent manner (Ba(2+), 91.2 ± 1.4% at -140 mV and Cs(+), 76.1 ± 6.9% at -140 mV, respectively). Next, using DiBAC(3), a fluorescence indicator of membrane potential, we verified that Ba(2+) induced an increase of fluorescence in EPCs (10 μM, 123 ± 2.8%), implying the depolarization of EPCs. At the mRNA and protein levels, we confirmed the existence of several Kir subtypes, including Kir2.x, 3.x, 4.x, and 6.x. In a functional experiment, we observed that, in the presence of Ba(2+), the number of tubes on Matrigel formed by EPCs was dose-dependently reduced (10 μM, 62.3 ± 6.5%). In addition, the proliferation of EPCs was increased in a dose-dependent fashion (10 μM, 157.9 ± 17.4%), and specific inhibition of Kir2.1 by small interfering RNA also increased the proliferation of EPCs (116.2 ± 2.5%). Our results demonstrate that EPCs express several types of Kir which may modulate the endothelial function and proliferation of EPCs.