PubMed 21257751

Referenced in Channelpedia wiki pages of: Kv12.1

Automatically associated channels: Kv12.1 , TRP , TRPM , TRPM3

Title: Signal transduction of pregnenolone sulfate in insulinoma cells: activation of Egr-1 expression involving TRPM3, voltage-gated calcium channels, ERK, and ternary complex factors.

Authors: Sabine I Mayer, Isabelle Müller, Stefanie Mannebach, Takeshi Endo, Gerald Thiel

Journal, date & volume: J. Biol. Chem., 2011 Mar 25 , 286, 10084-96

PubMed link:

The neurosteroid pregnenolone sulfate acts on the nervous system by modifying neurotransmission and receptor functions, thus influencing synaptic strength, neuronal survival, and neurogenesis. Here we show that pregnenolone sulfate induces a signaling cascade in insulinoma cells leading to enhanced expression of the zinc finger transcription factor Egr-1 and Egr-1-responsive target genes. Pharmacological and genetic experiments revealed that influx of Ca(2+) ions via transient receptor potential M3 and voltage-gated Ca(2+) channels, elevation of the cytosolic Ca(2+) level, and activation of ERK are essential for connecting pregnenolone sulfate stimulation with enhanced Egr-1 biosynthesis. Expression of a dominant-negative mutant of Elk-1, a key regulator of gene transcription driven by a serum response element, attenuated Egr-1 expression following stimulation, indicating that Elk-1 or related ternary complex factors connect the transcription of the Egr-1 gene with the pregnenolone sulfate-induced intracellular signaling cascade elicited by the initial influx of Ca(2+). The newly synthesized Egr-1 was biologically active and bound under physiological conditions to the regulatory regions of the Pdx-1, Synapsin I, and Chromogranin B genes. Pdx-1 is a major regulator of insulin gene transcription. Accordingly, elevated insulin promoter activity and increased mRNA levels of insulin could be detected in pregnenolone sulfate-stimulated insulinoma cells. Likewise, the biosynthesis of synapsin I, a synaptic vesicle protein that is found at secretory granules in insulinoma cells, was stimulated in pregnenolone sulfate-treated INS-1 cells. Together, these data show that pregnenolone sulfate induces a signaling cascade in insulinoma cells that is very similar to the signaling cascade induced by glucose in β-cells.