Channelpedia

PubMed 21678023


Referenced in Channelpedia wiki pages of: none

Automatically associated channels: TRP , TRPP , TRPP2



Title: Effect of lithium on the electrical properties of polycystin-2 (TRPP2).

Authors: María Del Rocío Cantero, Horacio F Cantiello

Journal, date & volume: , 2011 Jun 16 , ,

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/21678023


Abstract
Polycystin-2 (PC2, TRPP2) is a TRP-type, non-selective cation channel whose dysfunction is implicated in changes in primary cilium structure and genesis of autosomal dominant polycystic kidney disease (ADPKD). Lithium (Li(+)) is a potent pharmaceutical agent whose effect on cell function is largely unknown. In this work, we explored the effect of Li(+) on PC2 channel function. In vitro translated PC2 was studied in a lipid bilayer reconstitution system exposed to different chemical conditions such as Li(+) or K(+) chemical gradients and different symmetrical concentrations of either cation. Li(+) inhibited PC2 function only from the external side, by decreasing the single-channel conductance and modifying the reversal potential consistent with both permeability to and blockage of the channel. When a chemical gradient was imposed, the PC2 single-channel conductance was 144 pS and 107 pS for either K(+) or Li(+), respectively. Data were analysed in terms of the Goldman-Hodgkin-Katz approximation and energy models based on absolute rate theory to understand the mechanism(s) of Li(+) transport and blockage of PC2. The 2S3B model better explained the findings, including saturation, anomalous mole fraction, non-linearity of the current-voltage curves under bi-ionic conditions and concentration dependence of permeability ratios. The data indicate that Li(+) modifies PC2 channel function, whose effect unmasks a high-affinity binding site for this ion, and an intrinsic asymmetry in the pore structure of the channel. The findings provide insights into possible mechanism(s) of Li(+) regulation of ciliary length and dysfunction mediated by this cation.