Channelpedia

PubMed 21713652


Referenced in: none

Automatically associated channels: TRP , TRPC



Title: Regulators of ca(2+) signaling in mast cells: potential targets for treatment of mast cell-related diseases?

Authors: Hong-Tao Ma, Michael A Beaven

Journal, date & volume: Adv. Exp. Med. Biol., 2011 , 716, 62-90

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/21713652


Abstract
A calcium signal is essential for degranulation, generation of eicosanoids and optimal production of cytokines in mast cells in response to antigen and other stimulants. The signal is initiated by phospholipase C-mediated production of inositol1,4,5-trisphosphate resulting in release of stored Ca(2+) from the endoplasmic reticulum (ER) and Golgi. Depletion of these stores activates influx of extracellular Ca(2+), usually referred to as store-operated calcium entry (SOCE), through the interaction of the Ca(2+)-sensor, stromal interacting molecule-1 (STIM1 ), in ER with Orai1(CRACM1) and transient receptor potential canonical (TRPC) channel proteins in the plasma membrane (PM). This interaction is enabled by microtubular-directed reorganization of ER to form ER/PM contact points or "punctae" in which STIM1 and channel proteins colocalize. The ensuing influx of Ca(2+) replenishes Ca(2+) stores and sustains elevated levels of cytosolic Ca(2+) ions-the obligatory signal for mast-cell activation. In addition, the signal can acquire spatial and dynamic characteristics (e.g., calcium puffs, waves, oscillations) that encode signals for specific functional outputs. This is achieved by coordinated regulation of Ca(2+) fluxes through ATP-dependent Ca(2+)-pumps and ion exchangers in mitochondria, ER and PM. As discussed in this chapter, studies in mast cells revealed much about the mechanisms described above but little about allergic and autoimmune diseases although studies in other types of cells have exposed genetic defects that lead to aberrant calcium signaling in immune diseases. Pharmacologic agents that inhibit or activate the regulatory components of calcium signaling in mast cells are also discussed along with the prospects for development of novel SOCE inhibitors that may prove beneficial in the treatment inflammatory mast-cell related diseases.