Channelpedia

PubMed 20981405


Referenced in Channelpedia wiki pages of: none

Automatically associated channels: BK



Title: BK channels affect glucose homeostasis and cell viability of murine pancreatic beta cells.

Authors: M Düfer, Y Neye, K Hörth, P Krippeit-Drews, A Hennige, H Widmer, H McClafferty, M J Shipston, H-U Häring, P Ruth, G Drews

Journal, date & volume: Diabetologia, 2011 Feb , 54, 423-32

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/20981405


Abstract
Evidence is accumulating that Ca(2+)-regulated K(+) (K(Ca)) channels are important for beta cell function. We used BK channel knockout (BK-KO) mice to examine the role of these K(Ca) channels for glucose homeostasis, beta cell function and viability.Glucose and insulin tolerance were tested with male wild-type and BK-KO mice. BK channels were detected by single-cell RT-PCR, cytosolic Ca(2+) concentration ([Ca(2+)](c)) by fura-2 fluorescence, and insulin secretion by radioimmunoassay. Electrophysiology was performed with the patch-clamp technique. Apoptosis was detected via caspase 3 or TUNEL assay.BK channels were expressed in murine pancreatic beta cells. BK-KO mice were normoglycaemic but displayed markedly impaired glucose tolerance. Genetic or pharmacological deletion of the BK channel reduced glucose-induced insulin secretion from isolated islets. BK-KO and BK channel inhibition (with iberiotoxin, 100 nmol/l) broadened action potentials and abolished the after-hyperpolarisation in glucose-stimulated beta cells. However, BK-KO did not affect action potential frequency, the plateau potential at which action potentials start or glucose-induced elevation of [Ca(2+)](c). BK-KO had no direct influence on exocytosis. Importantly, in BK-KO islet cells the fraction of apoptotic cells and the rate of cell death induced by oxidative stress (H(2)O(2), 10-100 μmol/l) were significantly increased compared with wild-type controls. Similar effects were obtained with iberiotoxin. Determination of H(2)O(2)-induced K(+) currents revealed that BK channels contribute to the hyperpolarising K(+) current activated under conditions of oxidative stress.Ablation or inhibition of BK channels impairs glucose homeostasis and insulin secretion by interfering with beta cell stimulus-secretion coupling. In addition, BK channels are part of a defence mechanism against apoptosis and oxidative stress.