Channelpedia

PubMed 20718730


Referenced in: none

Automatically associated channels: TRP , TRPC , TRPC1 , TRPC3 , TRPC4



Title: Ca2+ paradox injury mediated through TRPC channels in mouse ventricular myocytes.

Authors: Akiko Kojima, Hirotoshi Kitagawa, Mariko Omatsu-Kanbe, Hiroshi Matsuura, Shuichi Nosaka

Journal, date & volume: Br. J. Pharmacol., 2010 Dec , 161, 1734-50

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/20718730


Abstract
BACKGROUND AND PURPOSE The Ca(2+) paradox is an important phenomenon associated with Ca(2+) overload-mediated cellular injury in myocardium. The present study was undertaken to elucidate molecular and cellular mechanisms for the development of the Ca(2+) paradox. EXPERIMENTAL APPROACH Fluorescence imaging was performed on fluo-3 loaded quiescent mouse ventricular myocytes using confocal laser scanning microscope. KEY RESULTS The Ca(2+) paradox was readily evoked by restoration of the extracellular Ca(2+) following 10-20 min of nominally Ca(2+)-free superfusion. The Ca(2+) paradox was significantly reduced by blockers of transient receptor potential canonical (TRPC) channels (2-aminoethoxydiphenyl borate, Gd(3+), La(3+)) and anti-TRPC1 antibody. The sarcoplasmic reticulum (SR) Ca(2+) content, assessed by caffeine application, gradually declined during Ca(2+)-free superfusion, which was further accelerated by metabolic inhibition. Block of SR Ca(2+) leak by tetracaine prevented Ca(2+) paradox. The Na(+) /Ca(2+) exchange (NCX) blocker KB-R7943 significantly inhibited Ca(2+) paradox when applied throughout superfusion period, but had little effect when added for a period of 3 min before and during Ca(2+) restoration. The SR Ca(2+) content was better preserved during Ca(2+) depletion by KB-R7943. Immunocytochemistry confirmed the expression of TRPC1, in addition to TRPC3 and TRPC4, in mouse ventricular myocytes. CONCLUSIONS AND IMPLICATIONS These results provide evidence that (i) the Ca(2+) paradox is primarily mediated by Ca(2+) entry through TRPC (probably TRPC1) channels that are presumably activated by SR Ca(2+) depletion; and (ii) reverse mode NCX contributes little to the Ca(2+) paradox, whereas inhibition of NCX during Ca(2+) depletion improves SR Ca(2+) loading, and is associated with reduced incidence of Ca(2+) paradox in mouse ventricular myocytes.