PubMed 20643768

Referenced in Channelpedia wiki pages of: none

Automatically associated channels: BK , Kv2.1 , SK3 , Slo1

Title: Calcium-activated and voltage-gated potassium channels of the pancreatic islet impart distinct and complementary roles during secretagogue induced electrical responses.

Authors: David A Jacobson, Felipe Mendez, Michael Thompson, Jacqueline Torres, Olivia Cochet, Louis H Philipson

Journal, date & volume: J. Physiol. (Lond.), 2010 Sep 15 , 588, 3525-37

PubMed link:

Glucose-induced β-cell action potential (AP) repolarization is regulated by potassium efflux through voltage gated (Kv) and calcium activated (K(Ca)) potassium channels. Thus, ablation of the primary Kv channel of the β-cell, Kv2.1, causes increased AP duration. However, Kv2.1(-/-) islet electrical activity still remains sensitive to the potassium channel inhibitor tetraethylammonium. Therefore, we utilized Kv2.1(-/-) islets to characterize Kv and K(Ca) channels and their respective roles in modulating the β-cell AP. The remaining Kv current present in Kv2.1(-/-) β-cells is inhibited with 5 μM CP 339818. Inhibition of the remaining Kv current in Kv2.1(-/-) mouse β-cells increased AP firing frequency by 39.6% but did not significantly enhance glucose stimulated insulin secretion (GSIS). The modest regulation of islet AP frequency by CP 339818 implicates other K(+) channels, possibly K(Ca) channels, in regulating AP repolarization. Blockade of the K(Ca) channel BK with slotoxin increased β-cell AP amplitude by 28.2%, whereas activation of BK channels with isopimaric acid decreased β-cell AP amplitude by 30.6%. Interestingly, the K(Ca) channel SK significantly contributes to Kv2.1(-/-) mouse islet AP repolarization. Inhibition of SK channels decreased AP firing frequency by 66% and increased AP duration by 67% only when Kv2.1 is ablated or inhibited and enhanced GSIS by 2.7-fold. Human islets also express SK3 channels and their β-cell AP frequency is significantly accelerated by 4.8-fold with apamin. These results uncover important repolarizing roles for both Kv and K(Ca) channels and identify distinct roles for SK channel activity in regulating calcium- versus sodium-dependent AP firing.