PubMed 15596438

Referenced in Channelpedia wiki pages of: none

Automatically associated channels: ClvC3 , ClvC4

Title: Regulation of intracellular Cl- concentration through volume-regulated ClC-3 chloride channels in A10 vascular smooth muscle cells.

Authors: Jia-Guo Zhou, Jing-Li Ren, Qin-Ying Qiu, Hua He, Yong-Yuan Guan

Journal, date & volume: J. Biol. Chem., 2005 Feb 25 , 280, 7301-8

PubMed link:

We previously found that antisense oligonucleotide specific to ClC-3 (ClC-3 antisense) prevented rat aortic smooth muscle cell proliferation, which was related to cell volume regulation. In the present study, we further characterized the regulation of intracellular Cl(-) concentrations ([Cl(-)](i)) via volume-regulated ClC-3 Cl(-) channels in an embryo rat aortic vascular smooth muscle cell line (A10 cell) and ClC-3 cDNA-transfected A10 cells (ClC-3-A10) using multiple approaches including [Cl(-)](i) measurement, whole cell patch clamp, and application of ClC-3 antisense and intracellular dialysis of an anti-ClC-3 antibody. We found that hypotonic solution decreased [Cl(-)](i) and evoked a native I(Cl.vol) in A10 cells. The responses of [Cl(-)](i) and I(Cl.vol) to hypotonic challenge were enhanced by expression of ClC-3, and inhibited by ClC-3 antisense. The currents in A10 (I(Cl.vol)) and in ClC-3-A10 cells (I(Cl.ClC-3)) were remarkably inhibited by intracellular dialysis of anti-ClC-3 antibody. Reduction in [Cl(-)](i) and activation of I(Cl.vol) and I(Cl.ClC-3) in A10 and ClC-3-A10 cells, respectively, were significantly inhibited by activation of protein kinase C (PKC) by phorbol-12,13-dibutyrate (PDBu) and inhibition of tyrosine protein kinase by genistein. Sodium orthovanadate (vanadate), a protein-tyrosine phosphatase inhibitor, however, enhanced the cell swelling-induced reduction in [Cl(-)](i), accompanied by the activation of I(Cl.vol) and I(Cl.ClC-3) in a voltage-independent manner. Our results suggest that the volume-regulated ClC-3 Cl(-) channels play important role in the regulation of [Cl(-)](i) and cell proliferation of vascular smooth muscle cells.