Channelpedia

PubMed 14769548


Referenced in: none

Automatically associated channels: Kv7.2



Title: Comparison of the pharmacological properties of rat Na(V)1.8 with rat Na(V)1.2a and human Na(V)1.5 voltage-gated sodium channel subtypes using a membrane potential sensitive dye and FLIPR.

Authors: R G Vickery, S M Amagasu, R Chang, N Mai, E Kaufman, J Martin, J Hembrador, M D O'Keefe, C Gee, D Marquess, J A M Smith

Journal, date & volume: Recept. Channels, 2004 , 10, 11-23

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/14769548


Abstract
A novel, membrane potential sensitive dye and a fluorescence imaging plate reader (FLIPR) have been used to characterize the pharmacological properties of rat Na(v)1.8 voltage-gated sodium channels (VGSC) in parallel with rat Na(v)1.2a and human Na(v)1.5 VGSC subtypes, respectively. The sensitivity of recombinant Na(v)1.2a-CHO, Na(v)1.5-293-EBNA, and Na(v)1.8-F-11 cells to VGSC activators was subtype dependent. Veratridine evoked depolarization of Na(v)1.2a-CHO and Na(v)1.5-293-EBNA cells with pEC(50) values of 4.78 +/- 0.13 and 4.84 +/- 0.12, respectively (n = 3), but had negligible effect on Na(v)1.8-F-11 cells (pEC(50) < 4.5). Type I pyrethroids were without significant effect at all subtypes. In contrast, the type II pyrethroids deltamethrin and fenvalerate evoked direct depolarization of Na(v)1.8-F-11 and Na(v)1.5-293-EBNA cells. Deltamethrin potentiated the veratridine-evoked response in Na(v)1.8-F-11 cells by > or =20-fold, in contrast to a <or =3-fold potentiation of the response in Na(v)1.2a, and Na(v)1.5 cells. Tetrodotoxin (TTX) inhibited VGSC activator-evoked depolarization of Na(v)1.8-F-11 cells with a biphasic concentration-response curve. The calculated pIC(50) values were 8.05 +/- 0.25 (n = 4) and 4.32 +/- 0.21 (n = 4), corresponding to TTX inhibition of endogenous TTX-sensitive (TTX-S), and recombinant Na(v)1.8 TTX-resistant (TTX-R) VGSCs, respectively. With the exception of TTX, the potencies of a number of ion channel blockers for the Na(v)1.8, Na(v)1.2a, and Na(v)1.5 VGSC subtypes were similar. In summary, these high-throughput FLIPR assays represent a valuable tool for the determination of the relative potencies of compounds at different VGSC subtypes and may prove useful for the identification of novel subtype-selective inhibitors.