PubMed 1358005
Referenced in: none
Automatically associated channels: Kir2.3
Title: AMPA and NMDA receptor antagonists do not decrease hippocampal glutamate concentrations during transient global ischemia.
Authors: M Matsumoto, M H Zornow, M S Scheller, M A Strnat
Journal, date & volume: Anesthesiology, 1992 Oct , 77, 764-71
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/1358005
Abstract
Increased extracellular concentrations of glutamate during episodes of cerebral ischemia may be due in part to a positive glutaminergic feedback loop. We evaluated the effect of selective AMPA or NMDA receptor antagonists on hippocampal extracellular concentrations of excitatory amino acids during ischemia and reperfusion. Thirteen New Zealand white rabbits were subjected to 10 min of global cerebral ischemia produced by neck tourniquet inflation (20 psi) combined with systemic hypotension during halothane (1-1.5%) anesthesia. Hippocampal extracellular concentrations of glutamate, aspartate, and glycine were monitored using in vivo microdialysis. NBQX (a selective AMPA receptor antagonist), MK801 (a noncompetitive NMDA receptor antagonist), or 5% dextrose was administered starting 1 h before ischemia. The NBQX group (n = 4) received 5 mg.kg-1 of NBQX intravenously (dissolved in 5% dextrose) over 5 min followed by an infusion of 5 mg.kg-1.h-1. The 5% dextrose group (n = 4) received an equivalent volume of 5% dextrose. The peak concentrations of glutamate, aspartate, and glycine in the early reperfusion period were 5-8-fold, 9-10-fold, and 4-5-fold higher than preischemic values, respectively. There were no significant differences, however, among the three groups in the concentrations of glutamate, aspartate, or glycine at any time during the study. These results do not support the existence of a positive feedback loop for glutamate mediated via AMPA or NMDA autoreceptors in the hippocampus during transient global ischemia or reperfusion.