Channelpedia

PubMed 16685598


Referenced in: none

Automatically associated channels: ClC3 , ClC4



Title: Volume-sensitive chloride channels involved in apoptotic volume decrease and cell death.

Authors: Y Okada, T Shimizu, E Maeno, S Tanabe, X Wang, N Takahashi

Journal, date & volume: J. Membr. Biol., 2006 Jan , 209, 21-9

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/16685598


Abstract
Apoptosis is an essential process in organ development, tissue homeostasis, somatic cell turnover, and the pathogenesis of degenerative diseases. Apoptotic cell death occurs in response to a variety of stimuli in physiological and pathological circumstances. Efflux of K(+) and Cl(-) leads to apoptotic volume decrease (AVD) of the cell. Both mitochondrion-mediated intrinsic, and death receptor-mediated extrinsic, apoptotic stimuli have been reported to rapidly activate Cl(-) conductances in a large variety of cell types. In epithelial cells and cardiomyocytes, the AVD-inducing anion channel was recently determined to be the volume-sensitive outwardly rectifying (VSOR) Cl(-) channel which is usually activated by swelling under non-apoptotic conditions. Blocking the VSOR Cl(-) channel prevented cell death in not only epithelial and cardiac cells, but also other cell types, by inhibiting the induction of AVD and subsequent apoptotic events. Ischemia-reperfusion-induced apoptotic death in cardiomyocytes and brain neurons was also prevented by Cl(-) channel blockers. Furthermore, cancer cell apoptosis induced by the anti-cancer drug cisplatin was recently found to be associated with augmented activity of the VSOR Cl(-) channel and to be inhibited by a Cl(-) channel blocker. The apoptosis-inducing VSOR Cl(-) channel is distinct from ClC-3 and its molecular identity remains to be determined.