Channelpedia

PubMed 9332886


Referenced in: none

Automatically associated channels: Kv2.1



Title: Aberrant expression of GABAA receptor subunits in the tottering mouse: an animal model for absence seizures.

Authors: M H Tehrani, B J Baumgartner, S C Liu, E M Barnes

Journal, date & volume: Epilepsy Res., 1997 Oct , 28, 213-23

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/9332886


Abstract
The single-locus mutant mouse tottering (tg) is an established model for absence seizures. We have previously reported an impairment in GABA-induced chloride uptake in tg brain [Tehrani and Barnes, Epilepsy Res. 1995;22:13-21]. In order to determine if this alteration in GABAA receptor function can be related to specific receptor isoforms, we examined the radioligand binding properties of GABAA receptors and the expression of GABAA receptor subunit mRNAs in the cerebral cortex. Saturation binding of [3H]flunitrazepam revealed a significantly lower Kd value in tg cortical tissues (1.77 +/- 0.05 nM) in comparison to that for the background C57BL/6J strain (3.23 +/- 0.23 nM), while the Bmax values were indistinguishable. Biphasic displacement of [3H]flunitrazepam binding by 2-oxoquazepam showed that low affinity binding sites account for 36 +/- 7.6 and 51 +/- 7.5% of the total in control and tg, respectively. The level of [35S]-t-butylbicyclophosphorothionate (TBPS) binding to tg cortical membranes was 73.6 +/- 5.8% of that in controls. Paired measurements by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) revealed no significant differences in the levels of GABAA receptor alpha 1, alpha 3, alpha 5, beta 2, beta 3, gamma 2 or gamma 3 subunit mRNAs between tg and control cortex. However, tg tissues showed elevated levels of alpha 2- and beta 1-subunit mRNAs, representing 256 and 177%, respectively, those of controls. For the tg cortex, the enhanced expression of GABAA receptor alpha 2 and beta 1 subunits correlates with recombinant subtypes known to have low affinity for 2-oxoquazepam and impaired binding of TBPS. These aberrant properties of GABAA receptors could influence the development or propagation of phenotypic seizures in the tottering mouse.