PubMed 18978037
Referenced in: none
Automatically associated channels: Kv2.1
Title: Arrhythmogenic actions of the Ca2+ channel agonist FPL-64716 in Langendorff-perfused murine hearts.
Authors: Nina S Ghais, Yanmin Zhang, Andrew A Grace, Christopher L-H Huang
Journal, date & volume: Exp. Physiol., 2009 Feb , 94, 240-54
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/18978037
Abstract
The experiments explored the extent to which alterations in L-type Ca(2+) channel-mediated Ca(2+) entry triggers Ca(2+)-mediated arrhythmogenesis in Langendorff-perfused murine hearts through use of the specific L-type Ca(2+) channel modulator FPL-64716 (FPL). Introduction of FPL (1 microm) resulted in a gradual development (>10 min) of diastolic electrical events and alternans in spontaneously beating hearts from which monophasic action potentials were recorded. In regularly paced hearts, they additionally led to non-sustained and sustained ventricular tachycardia (nsVT and sVT). Programmed electrical stimulation (PES) resulted in nsVT and sVT after 5-10 and >10 min perfusion, respectively. Pretreatments with nifedipine, diltiazem and cyclopiazonic acid abolished arrhythmogenic tendency induced by subsequent introduction of FPL, consistent with its dependence upon both extracellular Ca(2+) entry and the degree of filling of the sarcoplasmic reticular Ca(2+) store. Values for action potential duration at 90% repolarization when any of these agents were applied to FPL-treated hearts became indistinguishable from those shown by untreated control hearts, in contrast to earlier reports of their altering in long QT syndrome type 3 and hypokalaemic murine models for re-entrant arrhythmogenesis. These arrhythmic effects instead correlated with alterations in Ca(2+) homeostasis at the single-cell level found in investigations of the effects of both FPL and the same agents in regularly stimulated fluo-3 loaded myocytes. These findings are compatible with a prolonged extracellular Ca(2+) entry that potentially results in an intracellular Ca(2+) overload and produces the cardiac arrhythmogenecity following addition of FPL.