Channelpedia

PubMed 16769051


Referenced in: none

Automatically associated channels: ClC2 , ClC4



Title: Identification and functional characterization of ClC-2 chloride channels in trabecular meshwork cells.

Authors: Núria Comes, Elena Abad, Miguel Morales, Teresa Borrás, Arcadi Gual, Xavier Gasull

Journal, date & volume: Exp. Eye Res., 2006 Oct , 83, 877-89

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/16769051


Abstract
In the eye, trabecular meshwork (TM) cell volume may be an important determinant of aqueous humor outflow. Among their functions, ClC-2 chloride channels are thought to be involved in regulation of cellular volume and intracellular [Cl(-)]. We characterized the properties and modulation of an inwardly rectifying chloride current activated in these cells. Patch-clamp recordings revealed inwardly rectifying chloride currents activated by membrane hyperpolarization in primary cultures of both bovine (BTM) and human (HTM) TM cells. Electrophysiological properties and anion permeability sequence (Cl(-)>Br(-)>I(-)>F(-)) were in agreement with previous data for ClC-2 in other cells. The currents were blocked by Cd(2+) and enhanced by extracellular acidification, 8Br-cAMP and cell swelling, while extracellular alkalinization decreased them. RT-PCR experiments using total RNA revealed the molecular expression of ClC-2 channels. Previously we reported the involvement of swelling-activated chloride channels (Cl(swell)) and Ca(2+)-activated K(+) channels (BK(Ca)) in cell volume and outflow facility regulation. However, in the present analysis, cell volume experiments in calcein-loaded cells and outflow facility studies performed in bovine anterior segments revealed that ClC-2 channels do not make a significant contribution to the recovery of cellular volume or to the regulation of the outflow facility. Nevertheless, ClC-2 modulation by different stimuli may contribute to intracellular [Cl(-)] regulation and other cellular functions yet to be determined in the TM.