Channelpedia

PubMed 10720612


Referenced in: none

Automatically associated channels: Kir6.2 , Kv10.1



Title: Postnatal development of NR1, NR2A and NR2B immunoreactivity in the visual cortex of the rat.

Authors: Z Cao, M E Lickey, L Liu, E Kirk, B Gordon

Journal, date & volume: Brain Res., 2000 Mar 17 , 859, 26-37

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/10720612


Abstract
N-Methyl-D-aspartate receptors (NMDARs) are critically involved in some types of synaptic plasticity. The NMDAR subunits NR1, NR2A and NR2B are developmentally regulated, and it has been proposed that developmental changes in their expression may underlie developmental changes in cortical plasticity. Age-dependent change in cortical plasticity is most commonly measured by the monocular deprivation effect, which occurs during a critical period between P22 and P50 in the rat. Although the development of NMDAR subunits has been studied from birth through the fourth postnatal week, there is only meager information from older ages when visual plasticity ends. We hypothesized that there will be significant age-dependent change in expression of NR1, NR2A or NR2B between P22, when the cortex is plastic, and P90, when it is not. We applied specific antibodies recognizing NR1, NR2A and NR2B to the primary visual cortex at P14, P22, P30, P45 and P90. We found age-dependent changes in NR1-IR that were negatively correlated with changes in NR2A-IR; these subunits are not regulated in unison. In contrast, NR2A-IR and NR2B-IR were positively correlated. NR2A-IR and NR2B-IR both passed through a developmental minimum around P45, then recovered to approximately their P22 level. NR1-IR passed through a maximum at P45. There were no significant differences between P22 and P90. These results do not support the simple hypothesis that the loss of plasticity corresponds to a simple transition from juvenile levels of NMDAR subunit proteins to new adult levels. On the other hand, the results do confirm the hypothesis that there are significant changes in processing of NMDAR proteins during the time that plasticity is lost. How these changes of IR relate to synaptic transmission and plasticity needs to be clarified.