PubMed 16760341
Referenced in: none
Automatically associated channels: Cav2.2 , Slo1
Title: Ca2+ enhances U-type inactivation of N-type (CaV2.2) calcium current in rat sympathetic neurons.
Authors: Yong Sook Goo, Wonil Lim, Keith S Elmslie
Journal, date & volume: J. Neurophysiol., 2006 Sep , 96, 1075-83
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/16760341
Abstract
Ca2+ -dependent inactivation (CDI) has recently been shown in heterologously expressed N-type calcium channels (CaV2.2), but CDI has been inconsistently observed in native N-current. We examined the effect of Ca2+ on N-channel inactivation in rat sympathetic neurons to determine the role of CDI on mammalian N-channels. N-current inactivated with fast (tau approximately 150 ms) and slow (tau approximately 3 s) components in Ba2+. Ca2+ differentially affected these components by accelerating the slow component (slow inactivation) and enhancing the amplitude of the fast component (fast inactivation). Lowering intracellular BAPTA concentration from 20 to 0.1 mM accelerated slow inactivation, but only in Ca2+ as expected from CDI. However, low BAPTA accelerated fast inactivation in either Ca2+ or Ba2+, which was unexpected. Fast inactivation was abolished with monovalent cations as the charge carrier, but slow inactivation was similar to that in Ba2+. Increased Ca2+, but not Ba2+, concentration (5-30 mM) enhanced the amplitude of fast inactivation and accelerated slow inactivation. However, the enhancement of fast inactivation was independent of Ca2+ influx, which indicates the relevant site is exposed to the extracellular solution and is inconsistent with CDI. Fast inactivation showed U-shaped voltage dependence in both Ba2+ and Ca2+, which appears to result from preferential inactivation from intermediate closed states (U-type inactivation). Taken together, the data support a role for extracellular divalent cations in modulating U-type inactivation. CDI appears to play a role in N-channel inactivation, but on a slower (sec) time scale.