Channelpedia

PubMed 11738601


Referenced in: none

Automatically associated channels: Kir2.3



Title: Syntheses and evaluation of pyridazine and pyrimidine containing bioisosteres of (+/-)-pyrido[3.4-b]homotropane and pyrido-[3.4-b]tropane as novel nAChR ligands.

Authors: Daniela Gündisch, Thomas Kämpchen, Simone Schwarz, Gunther Seitz, Johanna Siegl, Thomas Wegge

Journal, date & volume: Bioorg. Med. Chem., 2002 Jan , 10, 1-9

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/11738601


Abstract
Bioisosteric replacement of the pyridine pharmacophoric element in (+/-)-pyrido[3.4-b]homotropane (PHT) and pyrido[3.4-b]tropane with the pyridazine and pyrimidine nucleus resulted in hitherto unknown nAChR ligands such as 5-8. Inverse type Diels-Alder reactions constitute the key steps in the new routes to the pyridazine- or pyrimidine-annulated bioisosteres. The enantiopure (+)-2-tropinone (11) from the 'chiral pool' is transformed to the ring-expanded silyl enol ether 12 and to the enamine 15. Both proved to be highly dienophilic species in the inverse type [4+2] cycloaddition reactions with the 1,2,4,5-tetrazines 13 and 16a,b or with the 1,3,5-triazine 19 to provide the enantiopure target compounds 5-7. In the same way the racemic pyrimidine-annulated species 8 was obtained from 3-tropanone 21. The new ligands were tested for their in vitro affinity for (alpha4)2(beta2)3 and alpha7* nAChR subtype. In comparison to PHT, well known to exhibit affinity for agonist binding sites in rat brain approximately equivalent to that of (+)-anatoxin-a (1), replacement of the pyridine by the bioisosteric pyridazine resulted in 30-fold lower affinity at the (alpha4)2(beta2)3 subtype. The annulated diazinotropanes 6-8, ligands with ferruginine-like structures more or less retained the affinity of (-)-norferruginine (3) except of compound 7. Remarkably, all of the novel ligands are devoid of affinity at the alpha7* subtype.