Channelpedia

PubMed 15953684


Referenced in: none

Automatically associated channels: Kir2.2 , Kir2.3 , Kir3.2



Title: The effect of GIRK2(wv) on neurite growth, protein expression, and viability in the CNS-derived neuronal cell line, CATH.A-differentiated.

Authors: J C Schein, J K T Wang, S K Roffler-Tarlov

Journal, date & volume: Neuroscience, 2005 , 134, 21-32

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/15953684


Abstract
Death occurs in the homozygous mutant mouse weaver among several classes of neuron in cerebellum and ventral midbrain, because these neurons carry a mutation in the G protein-gated inwardly rectifying potassium channel, Girk2. GIRK2 is expressed in all neuronal types killed by wv in cerebellum and midbrain as well as in neurons elsewhere that suffer lesser consequences. GIRK2(wv) affects neurons postnatally, after proliferation, at the time of final differentiation. To assess the impact of GIRK2(wv) on neuronal development and viability, we introduced cDNA encoding wild-type and mutant channels into a variant of a CNS derived catecholamine cell line (Cath.a) known as Cath.a-differentiated. When cultured in serum-free medium, Cath.a-differentiated cells cease proliferation and undergo morphological differentiation, growing long neurites. Cath.a-differentiated cells do not express endogenous Girk channels. Transfection of GIRK2(wv) resulted in the death of Cath.a-differentiated cells, in a cDNA-concentration dependent manner. The highest concentration of Girk2(wv) cDNA caused loss of about half the cells, the next highest concentration one-third, and the least had no effect on viability. However, even the lowest concentration resulted in disruption of neurite outgrowth and reduced the protein products of co-transfected genes. High concentrations of MK801, which prevent Na(+) influx through the mutant channel, prevented death induced by GIRK2(wv). Cell death and disruption of neurite outgrowth were counteracted in GIRK2(wv)-expressing cells by the presence of an unrelated inwardly rectifying potassium channel, Kir2.3. These results are consistent with wv being a gain-of-function mutation, causing disruption of cellular homeostasis by mechanisms such as increased Na(+) influx and chronic depolarization which may in turn result in an excessive metabolic burden on the cell.