Channelpedia

PubMed 16823026


Referenced in: none

Automatically associated channels: SK1 , SK2 , SK3 , Slo1



Title: Learning-induced reversal of the effect of noradrenalin on the postburst AHP.

Authors: Inbar Brosh, Kobi Rosenblum, Edi Barkai

Journal, date & volume: J. Neurophysiol., 2006 Oct , 96, 1728-33

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/16823026


Abstract
Pyramidal neurons in the piriform cortex from olfactory-discrimination-trained rats have reduced postburst afterhyperpolarization (AHP), for 3 days after learning, and are thus more excitable during this period. Such AHP reduction is caused by decreased conductance of one or more of the calcium-dependent potassium currents, I(AHP) and sI(AHP), that mediate the medium and slow AHPs. In this study, we examined which potassium current is reduced by learning and how the effect of noradrenalin (NE) on neuronal excitability is modified by such reduction. The small conductance (SK) channels inhibitor, apamin, that selectively blocks I(A)(HP), reduced the AHP in neurons from trained, naïve, and pseudotrained rats to a similar extent, thus maintaining the difference in AHP amplitude between neurons from trained rats and controls. In addition, the protein expression level of the SK1, SK2, and SK3 channels was also similar in all groups. NE, which was shown to enhance I(AHP) while suppressing (S)I(AHP), reduced the AHP in neurons from controls but enhanced the AHP in neurons from trained rats. Our data show that learning-induced enhancement of neuronal excitability is not the result of reduction in the I(AHP) current. Thus it is probably mediated by reduction in conductance of the other calcium-dependent potassium current, sI(AHP). Consequently, the effect of NE on neuronal excitability is reversed. We propose that the change in the effect of NE after learning may act to counterbalance learning-induced hyperexcitability and preserve the piriform cortex ability to subserve olfactory learning.