Channelpedia

PubMed 17967939


Referenced in: none

Automatically associated channels: Kv1.5



Title: Atrial antifibrillatory effects of structurally distinct IKur blockers 3-[(dimethylamino)methyl]-6-methoxy-2-methyl-4-phenylisoquinolin-1(2H)-one and 2-phenyl-1,1-dipyridin-3-yl-2-pyrrolidin-1-yl-ethanol in dogs with underlying heart failure.

Authors: Christopher P Regan, Laszlo Kiss, Gary L Stump, Charles J McIntyre, Douglas C Beshore, Nigel J Liverton, Christopher J Dinsmore, Joseph J Lynch

Journal, date & volume: J. Pharmacol. Exp. Ther., 2008 Jan , 324, 322-30

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/17967939


Abstract
Drug discovery efforts have focused recently on atrial-selective targets, including the Kv1.5 channel, which underlies the ultrarapid delayed rectifier current, I(Kur), to develop novel treatments for atrial fibrillation (AF). Two structurally distinct compounds, a triarylethanolamine TAEA and an isoquinolinone 3-[(dimethylamino)-methyl]-6-methoxy-2-methyl-4-phenylisoquinolin-1(2H)-one (ISQ-1), blocked I(Kur) in Chinese hamster ovary cells expressing human Kv1.5 with IC(50) values of 238 and 324 nM, respectively. In anesthetized dogs, i.v. infusions of TAEA and ISQ-1 elicited comparable 16% increases in atrial refractory period, with no effect on ventricular refractory period or QTc interval. Plasma concentrations at end infusion for TAEA and ISQ-1 were 58.5 +/- 23.6 and 330.3 +/- 43.5 nM, respectively. The abilities of TAEA and ISQ-1 to terminate AF, with comparison to the rapidly activating component of delayed rectifier potassium current blocker (+)-N-[1'-(6-cyano-1,2,3,4-tetrahydro-2(R)-naphthalenyl)-3,4-dihydro-4(R)-hydroxyspiro(2H-1-benzopyran-2,4'-piperidin)-6-yl]methanesulfonamide] monohydrochloride (MK-499) and the class IC 1-[2-[2-hydroxy-3-(propylamino)-propoxy]phenyl]-3-phenyl-1-propanone (propafenone), were assessed in conscious dogs with heart failure and inducible AF (entry criterion). All test agents administered in i.v. bolus regimens terminated AF in at least half of animals tested; conversely no agent was universally effective. MK-499, ISQ-1, TAEA, and propafenone terminated AF in five of six, four of seven, four of six, and five of six animals at plasma concentrations of 32.6 +/- 18.7, 817 +/- 274, 714 +/- 622, and 816 +/- 240 nM, respectively. Directed cardiac electrophysiologic studies in anesthetized dogs using i.v. bolus (consistent with AF studies) plus infusion regimens with TAEA and ISQ-1 demonstrated significant increases in atrial refractory period (12-15%), A-H and P-A intervals, but no effects on ventricular refractory period, H-V, and HEG intervals. The demonstration of AF termination with TAEA and ISQ-1 in the dog heart failure model extends the profile of antiarrhythmic efficacy of Kv1.5 blockade.