PubMed 18577704
Referenced in: none
Automatically associated channels: Kv7.2 , Kv7.3
Title: In vivo profile of ICA-27243 [N-(6-chloro-pyridin-3-yl)-3,4-difluoro-benzamide], a potent and selective KCNQ2/Q3 (Kv7.2/Kv7.3) activator in rodent anticonvulsant models.
Authors: Rosemarie Roeloffs, Alan D Wickenden, Christopher Crean, Stephen Werness, Grant McNaughton-Smith, James Stables, James O McNamara, Neil Ghodadra, Greg C Rigdon
Journal, date & volume: J. Pharmacol. Exp. Ther., 2008 Sep , 326, 818-28
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/18577704
Abstract
Openers or activators of neuronal KCNQ2/Q3 potassium channels decrease neuronal excitability and may provide benefit in the treatment of disorders of neuronal excitability such as epilepsy. In the present study, we evaluate the effects of ICA-27243 [N-(6-chloro-pyridin-3-yl)-3,4-difluoro-benzamide], an orally bioavailable, potent, and selective KCNQ2/Q3 opener, in a broad range of rodent seizure models. ICA-27243 was effective against maximal electroshock (MES) and pentylenetetrazole (PTZ)-induced seizures in both rats (MES, ED(50) = 1.5 mg/kg p.o.; PTZ, ED(50) = 2.2 mg/kg p.o.) and mice (MES, ED(50) = 8.6 mg/kg p.o.; PTZ, ED(50) = 3.9 mg/kg p.o.) in the rat amygdala kindling model of partial seizures (full protection from seizure at 9 mg/kg p.o.) and in the 6-Hz model of psychomotor seizures in mice (active at 10 mg/kg i.p.). Antiseizure efficacy in all models was observed at doses significantly less than those shown to effect open-field locomotor activity (rat ED(50) = 40 mg/kg p.o.) or ability to remain on a Rotorod (no effect in rat at doses up to 100 mg/kg p.o.). There was no evidence of cognition impairment as measured in the Morris water maze in the rat (10 and 30 mg/kg p.o.), nor was there evidence of the development of tolerance after multiple doses of ICA-27243. Our findings suggest that selective KCNQ2/Q3 opening activity in the absence of effects on KCNQ3/Q5 or GABA-activated channels may be sufficient for broad-spectrum antiepileptic activity in rodents.