PubMed 18023363
Referenced in: none
Automatically associated channels: Kv10.1
Title: K(ir) and K(v) channels regulate electrical properties and proliferation of adult neural precursor cells.
Authors: Takahiro Yasuda, Perry F Bartlett, David J Adams
Journal, date & volume: Mol. Cell. Neurosci., 2008 Feb , 37, 284-97
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/18023363
Abstract
The functional significance of the electrophysiological properties of neural precursor cells (NPCs) was investigated using dissociated neurosphere-derived NPCs from the forebrain subventricular zone (SVZ) of adult mice. NPCs exhibited hyperpolarized resting membrane potentials, which were depolarized by the K(+) channel inhibitor, Ba(2+). Pharmacological analysis revealed two distinct K(+) channel families: Ba(2+)-sensitive K(ir) channels and tetraethylammonium (TEA)-sensitive K(v) (primarily K(DR)) channels. Ba(2+) promoted mitogen-stimulated NPC proliferation, which was mimicked by high extracellular K(+), whereas TEA inhibited proliferation. Based on gene and protein levels in vitro, we identified K(ir)4.1, K(ir)5.1 and K(v)3.1 channels as the functional K(+) channel candidates. Expression of these K(+) channels was immunohistochemically found in NPCs of the adult mouse SVZ, but was negligible in neuroblasts. It therefore appears that expression of K(ir) and K(v) (K(DR)) channels in NPCs and related changes in the resting membrane potential could contribute to NPC proliferation and neuronal lineage commitment in the neurogenic microenvironment.