PubMed 16300633

Referenced in Channelpedia wiki pages of: none

Automatically associated channels: SK3

Title: NMDA neuroprotection against a phosphatidylinositol-3 kinase inhibitor, LY294002 by NR2B-mediated suppression of glycogen synthase kinase-3beta-induced apoptosis.

Authors: Agata Habas, Giorgi Kharebava, Erzsebet Szatmari, Michal Hetman

Journal, date & volume: J. Neurochem., 2006 Jan , 96, 335-48

PubMed link:

To identify the intracellular signaling pathways that mediate the pro-survival activity of NMDA receptors (NMDARs), we studied effects of exogenous NMDA on cultured rat cortical and hippocampal neurons that were treated with a phosphatidylinositol-3-kinase (PI3K) inhibitor, LY294002. NMDA at 5 or 10 microm protected against LY294002-induced apoptosis, suggesting NMDAR-mediated activation of a survival signaling pathway that is PI3K-independent. NR2B-specific NMDAR blockers antagonized anti-apoptotic effects of NMDA, indicating a critical role of NR2B NMDARs in the neuroprotection. NMDA at 10 microm suppressed LY294002-induced activation of a pro-apoptotic kinase, glycogen synthase kinase 3beta (GSK3beta). GSK3beta activation by LY294002 was associated with decreased levels of inhibitory GSK3beta phosphorylation at the Ser9 residue. However, NMDA did not prevent the LY294002-mediated decline of phospho-Ser9 levels. In addition, NMDA inhibited cortical neuron apoptosis induced by the overexpression of either wild type (wt) or Ser9Ala mutant form of GSK3beta, suggesting that NMDA suppressed GSK3beta in a Ser9-independent manner. Finally, inhibition of NR2B NMDARs reduced the NMDA protection against overexpression of GSK3betawt. These data indicate that moderate stimulation of NR2B NMDAR protects against inhibition of PI3K by a Ser9-independent inhibition of the pro-apoptotic activity of GSK3beta. Hence, the activation of NR2B and the Ser9-independent inhibition of GSK3beta are two newly identified elements of the signaling network that mediates the pro-survival effects of NMDA.