Channelpedia

PubMed 17334850


Referenced in: none

Automatically associated channels: ClC2 , ClC4



Title: Identification of ClC-2 and CIC-K2 chloride channels in cultured rat type IV spiral ligament fibrocytes.

Authors: Chunyan Qu, Fenghe Liang, Nancy M Smythe, Bradley A Schulte

Journal, date & volume: J. Assoc. Res. Otolaryngol., 2007 Jun , 8, 205-19

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/17334850


Abstract
Voltage-gated chloride channels (ClCs) are important mediators of cellular ion homeostasis and volume regulation. In an earlier study, we used immunohistochemical, Western blot, and reverse transcriptase PCR (RT-PCR) approaches to identify ClC-K variants in types II, IV, and V fibrocytes of the rodent spiral ligament. We have now confirmed the expression of ClC-K2 in these cells by in situ hybridization. All three of these fibrocyte subtypes are thought to be involved in cochlear K(+) recycling; thus, it is important to understand the precise mechanisms regulating their membrane conductance and the role played by ClCs in this process. In this study, we report the characterization of a secondary cell line derived from explants from the region of the rat spiral ligament underlying and inferior to the spiral prominence. The cultured cells were immunopositive for vimentin, Na,K/ATPase, Na,K,Cl-cotransporter, carbonic anhydrase isozyme II, and creatine kinase isozyme BB, but not for cytokeratins or Ca/ATPase, an immunostaining profile indicative of the type IV subtype. Evaluation of the cultures by RT-PCR and Western blot analysis confirmed the presence of both ClC-2 and -K2. Whole-cell patch clamp recordings identified two biophysically distinct Cl(-) currents in the cultured cells. One, an inwardly rectifying Cl(-) current activated by hyperpolarization or decreasing extracellular pH corresponded with the properties of ClC-2. The other, a weak outwardly rectifying Cl(-) current regulated by extracellular pH, Cl(-), and Ca(2+) resembled the channel characteristics of ClC-K2 when expressed in Xenopus oocytes. These findings suggest that at least two functionally different chloride channels are involved in regulating membrane anion conductance in cultured type IV spiral ligament fibrocytes.