PubMed 17534067
Referenced in: none
Automatically associated channels: Kir2.3
Title: The genetic control of susceptibility to Mycobacterium tuberculosis.
Authors: W J Britton, S L Fernando, B M Saunders, R Sluyter, J S Wiley
Journal, date & volume: Novartis Found. Symp., 2007 , 281, 79-89; discussion 89-92, 208-9
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/17534067
Abstract
Mycobacterium tuberculosis is one of the most successful human pathogens, surviv ing in latent foci of infection in one third of humanity, yet causing lung necrosis in sufficient individuals to ensure its transmission. Each stage of the host response to M. tuberculosis is under genetic control, including the initial encounter with mycobacteria by macrophages, epithelial cells and dendritic cells in the lung, induction of the inductive T cell response, and killing by activated macrophages within granulomas. Although environmental factors are important determinants of progression to disease, there is a genetic component underlying susceptibility to tuberculosis (TB), the basis of which may vary in different populations. Recent studies using a variety of methods have defined a number of susceptibility alleles for the development of active TB. Many of these influence macrophage responses to mycobacteria. We have studied the influence of loss of function polymorphisms in the human P2X7 gene on the capacity of macrophages to kill M. tuberculosis. Activation of the P2X7 receptor, an ATP-gated Ca2+ channel, leads to the formation of pores, the activation of phospholipase D, and the induction of apoptosis with death of the infecting mycobacteria. Macrophages from subjects who are heterozygote, homozygote or compound heterozygote for these polymorphisms fail to undergo apoptosis and show partial or complete inhibition of mycobacterial killing. One of these non-functioning polymorphisms was significantly associated with increased susceptibility to TB disease, particularly extrapulmonary disease, in two unrelated cohorts of TB patients. Insights into the genetic regulation of susceptibility to human TB may identify novel methods for controlling latent M. tuberculosis and reducing the burden of tuberculosis.