Channelpedia

PubMed 17962325


Referenced in: none

Automatically associated channels: Kir6.2 , Slo1



Title: Cajal Retzius cells in the mouse neocortex receive two types of pre- and postsynaptically distinct GABAergic inputs.

Authors: Knut Kirmse, Anton Dvorzhak, Christian Henneberger, Rosemarie Grantyn, Sergei Kirischuk

Journal, date & volume: J. Physiol. (Lond.), 2007 Dec 15 , 585, 881-95

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/17962325


Abstract
Cajal-Retzius (CR) cells are principal cells of layer I in the developing neocortex. They are able to generate action potentials, make synaptic contacts in layer I and receive excitatory GABAergic inputs before birth. Although CR cells participate in neuronal network activity in layer I, the properties of their synaptic inputs are not yet characterized. We recorded miniature (mIPSCs) and evoked (eIPSCs) postsynaptic currents using the whole-cell patch-clamp technique. Most of CR cells displayed two types of mIPSCs, namely those with fast (mIPSC(F)) and slow (mIPSC(S)) rise kinetics. The mIPSC(F) mean amplitude was significantly larger than that of mIPSC(S), while their decay rates were not different. Peak-scaled non-stationary noise analysis revealed that mIPSC(S) and mIPSC(F) differed in their weighted single-channel conductance. In addition, zolpidem (100 nm), a modulator of alpha(1) subunit-containing GABA(A) receptors, selectively affected mIPSC(S) suggesting that different postsynaptic GABA(A) receptors mediate mIPSC(F) and mIPSC(S). eIPSCs also split into two populations with different rise kinetics. Fast eIPSCs (eIPSC(F)) displayed higher paired-pulse ratio (PPR) and lower GABA release probability than slowly rising eIPSCs (eIPSC(S)). As CGP55845, a GABA(B) receptor antagonist, eliminated the observed difference in PPR, the lower release probability at IPSC(F) connections probably reflects a stronger tonic GABA(B) receptor-mediated inhibition of IPSC(F) synapses. At low (0.1 Hz) stimulation frequency both inputs can effectively convert presynaptic action potentials into postsynaptic ones; however, only IPSC(F) connections reliably transfer the presynaptic activity patterns at higher stimulation rates. Thus, CR cells receive two GABAergic inputs, which differ in the quantal amplitude, the probability of GABA release and the frequency dependence of signal transfer.