PubMed 17404310

Referenced in Channelpedia wiki pages of: none

Automatically associated channels: Kir6.1

Title: IFN-gamma induces cysteinyl leukotriene receptor 2 expression and enhances the responsiveness of human endothelial cells to cysteinyl leukotrienes.

Authors: Grzegorz Woszczek, Li-Yuan Chen, Sahrudaya Nagineni, Sara Alsaaty, Anya Harry, Carolea Logun, Rafal Pawliczak, James H Shelhamer

Journal, date & volume: J. Immunol., 2007 Apr 15 , 178, 5262-70

PubMed link:

Cysteinyl leukotrienes (cysLTs) are important mediators of cell trafficking and innate immune responses, involved in the pathogenesis of inflammatory processes, i.e., atherosclerosis, pulmonary fibrosis, and bronchial asthma. The aim of this study was to examine the regulation of cysLT signaling by IFN-gamma in human primary endothelial cells. IFN-gamma increased cysLT receptor 2 (CysLTR2) mRNA expression and CysLTR2-specific calcium signaling in endothelial cells. IFN-gamma signaled through Jak/STAT1, as both AG490, a Jak2 inhibitor, and expression of a STAT1 dominant-negative construct, significantly inhibited CysLTR2 mRNA expression in response to IFN-gamma. To determine mechanisms of IFN-gamma-induced CysLTR2 expression, the human CysLTR2 gene structure was characterized. The CysLTR2 gene has a TATA-less promoter, with multiple transcription start sites. It consists of six variably spliced exons. Eight different CysLTR2 transcripts were identified in endothelial and monocytic cells. Gene reporter assay showed potent basal promoter activity of a putative CysLTR2 promoter region. However, there were no significant changes in gene reporter and mRNA t(1/2) assays in response to IFN-gamma, suggesting transcriptional control of CysLTR2 mRNA up-regulation by IFN-gamma response motifs localized outside of the cloned CysLTR2 promoter region. Stimulation of endothelial cells by cysLTs induced mRNA and protein expression of early growth response genes 1, 2, and 3 and cycloxygenase-2. This response was mediated by CysLTR2 coupled to G(q/11), activation of phospholipase C, and inositol-1,4,5-triphosphate, and was enhanced further 2- to 5-fold by IFN-gamma stimulation. Thus, IFN-gamma induces CysLTR2 expression and enhances cysLT-induced inflammatory responses.