PubMed 18971456

Referenced in Channelpedia wiki pages of: none

Automatically associated channels: Kv2.1

Title: Opposite effects of zinc on human and rat P2X2 receptors.

Authors: Rachel K Tittle, Richard I Hume

Journal, date & volume: J. Neurosci., 2008 Oct 29 , 28, 11131-40

PubMed link:

P2X(2) receptors from rats show potentiation when a submaximal concentration of ATP is combined with zinc in the range of 10-100 microM. Alignment of the amino acid sequences of human P2X(2) (hP2X(2)) and rat P2X(2) (rP2X(2)) indicated that only one of two histidines essential for zinc potentiation in rP2X(2) is present at the homologous position in hP2X(2) (H132), with the position homologous to rat H213 instead having an arginine (R225). When expressed in Xenopus oocytes, mouse P2X(2a) and P2X(2b) receptors showed zinc potentiation indistinguishable from rat P2X(2a), but hP2X(2b) receptors were inhibited by zinc. The extent of zinc inhibition of hP2X(2b) varied with the ATP concentration, with an IC(50) of 8.4 microM zinc when ATP was applied at 10% of maximal and 87 microM zinc when ATP was applied at 99% of maximal. Site-directed mutagenesis showed that none of the nine histidines in the extracellular domain of hP2X(2b) were required for zinc inhibition, although inhibition was attenuated in the H204A and H209A mutations. Mutating R225 to a cysteine was sufficient to confer zinc potentiation onto hP2X(2b), and zinc potentiation was absent in the hP2X(2b)H132A/R225C double mutant. This suggests that zinc potentiation in the mutant hP2X(2b) uses the same mechanism as zinc potentiation in wild-type rP2X(2a). Because of the species-specific modulation by zinc, evidence for an in vivo role of P2X(2) receptors based on studies conducted on genetically modified mice needs to be viewed with caution when extrapolations are made to the function of the human nervous system.