Channelpedia

PubMed 20168046


Referenced in Channelpedia wiki pages of: none

Automatically associated channels: BK



Title: Losartan normalizes endothelium-derived hyperpolarizing factor-mediated relaxation by activating Ca2+-activated K+ channels in mesenteric artery from type 2 diabetic GK rat.

Authors: Takayuki Matsumoto, Keiko Ishida, Kumiko Taguchi, Tsuneo Kobayashi, Katsuo Kamata

Journal, date & volume: J. Pharmacol. Sci., 2010 Mar 19 , 112, 299-309

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/20168046


Abstract
Ca(2+)-activated K(+) (K(Ca)) channels are important for endothelium-derived hyperpolarizing factor (EDHF) signaling. Since treatment with angiotensin II receptor blockers (ARBs) improves vasculopathies in type 2 diabetic patients, we asked whether the EDHF-type relaxation and its associated K(Ca) channels [small (SK(Ca))-, intermediate (IK(Ca))-, and large (BK(Ca))-conductance channels] are abnormal in mesenteric arteries isolated from Goto-Kakizaki (GK) rats at the chronic stage of type 2 diabetes (34 - 38 weeks) and whether an ARBs (losartan, 25 mg . kg(-1) . day(-1) for 2 weeks) might correct these abnormalities. Although the acetylcholine chloride-induced EDHF-type relaxation in mesenteric arteries from GK rats was reduced versus the Wistar controls, it was significantly restored by losartan treatment. The SK(Ca)-blocker apamin or the IK(Ca)-blocker 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34) inhibited such relaxations in the losartan-treated or -untreated Wistar groups and in the losartan-treated GK group, but not in the losartan-untreated GK group. The BK(Ca)-blocker iberiotoxin had a significant inhibitory effect in only one of these groups, the losartan-treated GK. The relaxations induced by the SK(Ca)/IK(Ca) activator NS309 and the BK(Ca) activator NS1619, which were impaired in GK rats, were normalized by losartan treatment. We conclude that losartan improves EDHF-type relaxation in GK rats at least partly by normalizing SK(Ca)/IK(Ca) activities and increasing BK(Ca) activity.