Channelpedia

PubMed 20826678


Referenced in: none

Automatically associated channels: BKβ , SK2



Title: Ca2+ and Ca2+-activated k+ channels that support and modulate transmitter release at the olivocochlear efferent-inner hair cell synapse.

Authors: Javier Zorrilla de San Martín, Sonja Pyott, Jimena Ballestero, Eleonora Katz

Journal, date & volume: J. Neurosci., 2010 Sep 8 , 30, 12157-67

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/20826678


Abstract
In the mammalian auditory system, the synapse between efferent olivocochlear (OC) neurons and sensory cochlear hair cells is cholinergic, fast, and inhibitory. This efferent synapse is mediated by the nicotinic alpha9alpha10 receptor coupled to the activation of SK2 Ca(2+)-activated K(+) channels that hyperpolarize the cell. So far, the ion channels that support and/or modulate neurotransmitter release from the OC terminals remain unknown. To identify these channels, we used an isolated mouse cochlear preparation and monitored transmitter release from the efferent synaptic terminals in inner hair cells (IHCs) voltage clamped in the whole-cell recording configuration. Acetylcholine (ACh) release was evoked by electrically stimulating the efferent fibers that make axosomatic contacts with IHCs before the onset of hearing. Using the specific antagonists for P/Q- and N-type voltage-gated calcium channels (VGCCs), omega-agatoxin IVA and omega-conotoxin GVIA, respectively, we show that Ca(2+) entering through both types of VGCCs support the release process at this synapse. Interestingly, we found that Ca(2+) entering through the dihydropiridine-sensitive L-type VGCCs exerts a negative control on transmitter release. Moreover, using immunostaining techniques combined with electrophysiology and pharmacology, we show that BK Ca(2+)-activated K(+) channels are transiently expressed at the OC efferent terminals contacting IHCs and that their activity modulates the release process at this synapse. The effects of dihydropiridines combined with iberiotoxin, a specific BK channel antagonist, strongly suggest that L-type VGCCs negatively regulate the release of ACh by fueling BK channels that are known to curtail the duration of the terminal action potential in several types of neurons.