Channelpedia

PubMed 20816411


Referenced in: none

Automatically associated channels: Cav2.1



Title: Biological science of headache channels.

Authors: Daniela Pietrobon

Journal, date & volume: , 2010 , 97C, 73-83

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/20816411


Abstract
Several episodic neurological diseases, including familial hemiplegic migraine (FHM) and different types of epilepsy, are caused by mutations in ion channels, and hence classified as channelopathies. The classification of FHM as a channelopathy has introduced a new perspective in headache research and has strengthened the idea of migraine as a disorder of neural excitability. Here we review recent studies of the functional consequences of mutations in the CACNA1A and SCNA1A genes (encoding the pore-forming subunit of Ca(V)2.1 and Na(V)1.1 channels) and the ATPA1A2 gene (encoding the alpha(2) subunit of the Na(+)/K(+) pump), responsible for FHM1, FHM3, and FHM2, respectively. These studies show that: (1) FHM1 mutations produce gain-of-function of the Ca(V)2.1 channel and, as a consequence, increased glutamate release at cortical synapses and facilitation of induction and propagation of cortical spreading depression (CSD); (2) FHM2 mutations produce loss-of-function of the alpha(2) Na(+)/K(+)-ATPase; and (3) the FHM3 mutation accelerates recovery from fast inactivation of Na(V)1.5 channels. These findings are consistent with the hypothesis that FHM mutations share the ability to render the brain more susceptible to CSD, by causing excessive synaptic glutamate release (FHM1) or decreased removal of K(+) and glutamate from the synaptic cleft (FHM2) or excessive extracellular K(+) (FHM3).