PubMed 19620881

Referenced in Channelpedia wiki pages of: none

Automatically associated channels: KCNQ1 , Kv7.1 , Slo1

Title: Paroxysmal beta-adrenergic receptor-mediated alterations in ventricular repolarization at rapid heart rates during inhibition of delayed rectifier currents.

Authors: Brian R Overholser, Xiaomei Zheng, James E Tisdale

Journal, date & volume: J. Cardiovasc. Pharmacol., 2009 Sep , 54, 253-62

PubMed link:

The contribution of the slow component of the delayed rectifier current (IKs) to ventricular repolarization is increased during rapid heart rates and prolonged repolarization. The objective was to characterize physiologically relevant paroxysmal beta-adrenergic receptor-mediated alterations on ventricular repolarization under these conditions. Paced guinea pig hearts were perfused with (1) control, (2) sparfloxacin (IKr inhibitor), or (3) sparfloxacin and HMR 1556 (IKs inhibitor). The mean +/- standard error of the mean epicardial action potential duration at 90% repolarization (APD90) increased from baseline with IKr inhibition (12.9% +/- 4.7%) and dual IKr/IKs inhibition (25.1% +/- 5.3). Paroxysmal isoproterenol (0.01 and 1.0 nM) significantly decreased APD90 in the presence of IKr inhibition but was attenuated with the addition of IKs inhibition. Spontaneous episodes of polymorphic ventricular tachycardia were observed with isoproterenol during dual IKr and IKs inhibition. The endocardial expression of KCNQ1 increased greater than 2-fold after exposure to IKr and dual IKr/IKs inhibition relative to control but was not altered in epicardial tissue. The beta-adrenergic receptor-mediated decrease in APD90 during IKr inhibition is reversed in the presence of IKs inhibition at rapid heart rates. IKs may serve as an important compensatory mechanism to protect against adrenergically induced arrhythmias when the repolarization reserve is depleted.