Channelpedia

PubMed 20495007


Referenced in: none

Automatically associated channels: Kir2.1



Title: The extracellular K+ concentration dependence of outward currents through Kir2.1 channels is regulated by extracellular Na+ and Ca2+.

Authors: Hsueh-Kai Chang, Jay-Ron Lee, Tai-An Liu, Ching-Shu Suen, Jorge Arreola, Ru-Chi Shieh

Journal, date & volume: J. Biol. Chem., 2010 Jul 23 , 285, 23115-25

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/20495007


Abstract
It has been known for more than three decades that outward Kir currents (I(K1)) increase with increasing extracellular K(+) concentration ([K(+)](o)). Although this increase in I(K1) can have significant impacts under pathophysiological cardiac conditions, where [K(+)](o) can be as high as 18 mm and thus predispose the heart to re-entrant ventricular arrhythmias, the underlying mechanism has remained unclear. Here, we show that the steep [K(+)](o) dependence of Kir2.1-mediated outward I(K1) was due to [K(+)](o)-dependent inhibition of outward I(K1) by extracellular Na(+) and Ca(2+). This could be accounted for by Na(+)/Ca(2+) inhibition of I(K1) through screening of local negative surface charges. Consistent with this, extracellular Na(+) and Ca(2+) reduced the outward single-channel current and did not increase open-state noise or decrease the mean open time. In addition, neutralizing negative surface charges with a carboxylate esterifying agent inhibited outward I(K1) in a similar [K(+)](o)-dependent manner as Na(+)/Ca(2+). Site-directed mutagenesis studies identified Asp(114) and Glu(153) as the source of surface charges. Reducing K(+) activation and surface electrostatic effects in an R148Y mutant mimicked the action of extracellular Na(+) and Ca(2+), suggesting that in addition to exerting a surface electrostatic effect, Na(+) and Ca(2+) might inhibit outward I(K1) by inhibiting K(+) activation. This study identified interactions of K(+) with Na(+) and Ca(2+) that are important for the [K(+)](o) dependence of Kir2.1-mediated outward I(K1).