Channelpedia

PubMed 20466723


Referenced in: none

Automatically associated channels: ClC4 , ClC6 , ClC7



Title: The late endosomal ClC-6 mediates proton/chloride countertransport in heterologous plasma membrane expression.

Authors: Ioana Neagoe, Tobias Stauber, Pawel Fidzinski, Eun-Yeong Bergsdorf, Thomas J Jentsch

Journal, date & volume: J. Biol. Chem., 2010 Jul 9 , 285, 21689-97

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/20466723


Abstract
Members of the CLC protein family of Cl(-) channels and transporters display the remarkable ability to function as either chloride channels or Cl(-)/H(+) antiporters. Due to the intracellular localization of ClC-6 and ClC-7, it has not yet been possible to study the biophysical properties of these members of the late endosomal/lysosomal CLC branch in heterologous expression. Whereas recent data suggest that ClC-7 functions as an antiporter, transport characteristics of ClC-6 have remained entirely unknown. Here, we report that fusing the green fluorescent protein (GFP) to the N terminus of ClC-6 increased its cell surface expression, allowing us to functionally characterize ClC-6. Compatible with ClC-6 mediating Cl(-)/H(+) exchange, Xenopus oocytes expressing GFP-tagged ClC-6 alkalinized upon depolarization. This alkalinization was dependent on the presence of extracellular anions and could occur against an electrochemical proton gradient. As observed in other CLC exchangers, ClC-6-mediated H(+) transport was abolished by mutations in either the "gating" or "proton" glutamate. Overexpression of GFP-tagged ClC-6 in CHO cells elicited small, outwardly rectifying currents with a Cl(-) > I(-) conductance sequence. Mutating the gating glutamate of ClC-6 yielded an ohmic anion conductance that was increased by additionally mutating the "anion-coordinating" tyrosine. Additionally changing the chloride-coordinating serine 157 to proline increased the NO(3)(-) conductance of this mutant. Taken together, these data demonstrate for the first time that ClC-6 is a Cl(-)/H(+) antiporter.