Channelpedia

PubMed 16962240


Referenced in: none

Automatically associated channels: Nav1.4



Title: Preferential block of inactivation-deficient Na+ currents by capsaicin reveals a non-TRPV1 receptor within the Na+ channel.

Authors: Sho-Ya Wang, Jane Mitchell, Ging Kuo Wang

Journal, date & volume: Pain, 2007 Jan , 127, 73-83

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/16962240


Abstract
Capsaicin elicits burning pain via the activation of the vanilloid receptor (TRPV1). Intriguingly, several reports showed that capsaicin also inhibits Na+ currents but the mechanisms remain unclear. To explore this non-TRPV1 action we applied capsaicin to HEK293 cells stably expressing inactivation-deficient rat skeletal muscle Na+ mutant channels (rNav1.4-WCW). Capsaicin elicited a conspicuous time-dependent block of inactivation-deficient Na+ currents. The 50% inhibitory concentration (IC50) of capsaicin for open Na+ channels at +30 mV was measured 6.8+/-0.6 microM (n=5), a value that is 10-30 times lower than those for resting (218 microM) and inactivated (74 microM) wild-type Na+ channels. On-rate and off-rate constants for capsaicin open-channel block at +30 mV were estimated to be 6.37 microM(-1) s(-1) and 34.4 s(-1), respectively, with a calculated dissociation constant (KD) of 5.4 microM. Capsaicin at 30 microM produced approximately 70% additional use-dependent block of remaining rNav1.4-WCW Na+ currents during repetitive pulses at 1 Hz. Site-directed mutagenesis showed that the local anesthetic receptor was not responsible for the capsaicin block of the inactivation-deficient Na+ channel. Interestingly, capsaicin elicited little time-dependent block of batrachotoxin-modified rNav1.4-WCW Na+ currents, indicating that batrachotoxin prevents capsaicin binding. Finally, neuronal open Na+ channels endogenously expressed in GH3 cells were as sensitive to capsaicin block as rNav1.4 counterparts. We conclude that capsaicin preferentially blocks persistent late Na+ currents, probably via a receptor that overlaps the batrachotoxin receptor but not the local anesthetic receptor. Drugs that target such a non-TRPV1 receptor could be beneficial for patients with neuropathic pain.