PubMed 17495071

Referenced in Channelpedia wiki pages of: none

Automatically associated channels: Kv3.4 , Slo1

Title: Up-regulation and increased activity of KV3.4 channels and their accessory subunit MinK-related peptide 2 induced by amyloid peptide are involved in apoptotic neuronal death.

Authors: A Pannaccione, F Boscia, A Scorziello, A Adornetto, P Castaldo, R Sirabella, M Taglialatela, G F Di Renzo, L Annunziato

Journal, date & volume: Mol. Pharmacol., 2007 Sep , 72, 665-73

PubMed link:

The aim of the present study was to investigate whether K(V)3.4 channel subunits are involved in neuronal death induced by neurotoxic beta-amyloid peptides (Abeta). In particular, to test this hypothesis, three main questions were addressed: 1) whether the Abeta peptide can up-regulate both the transcription/translation and activity of K(V)3.4 channel subunit and its accessory subunit, MinK-related peptide 2 (MIRP2); 2) whether the increase in K(V)3.4 expression and activity can be mediated by the nuclear factor-kappaB (NF-kappaB) family of transcriptional factors; and 3) whether the specific inhibition of K(V)3.4 channel subunit reverts the Abeta peptide-induced neurodegeneration in hippocampal neurons and nerve growth factor (NGF)-differentiated PC-12 cells. We found that Abeta(1-42) treatment induced an increase in K(V)3.4 and MIRP2 transcripts and proteins, detected by reverse transcription-polymerase chain reaction and Western blot analysis, respectively, in NGF-differentiated PC-12 cells and hippocampal neurons. Patch-clamp experiments performed in whole-cell configuration revealed that the Abeta peptide caused an increase in I(A) current amplitude carried by K(V)3.4 channel subunits, as revealed by their specific blockade with blood depressing substance-I (BDS-I) in both hippocampal neurons and NGF-differentiated PC-12 cells. The inhibition of NF-kappaB nuclear translocation with the cell membrane-permeable peptide SN-50 prevented the increase in K(V)3.4 protein and transcript expression. In addition, the SN-50 peptide was able to block Abeta(1-42)-induced increase in K(V)3.4 K(+) currents and to prevent cell death caused by Abeta(1-42) exposure. Finally, BDS-I produced a similar neuroprotective effect by inhibiting the increase in K(V)3.4 expression. As a whole, our data indicate that K(V)3.4 channels could be a novel target for Alzheimer's disease pharmacological therapy.