Channelpedia

PubMed 19669528


Referenced in Channelpedia wiki pages of: none

Automatically associated channels: Kv2.1



Title: Impedance analysis of ion transport through supported lipid membranes doped with ionophores: a new kinetic approach.

Authors: P E Alvarez, C A Gervasi, A E Vallejo

Journal, date & volume: J Biol Phys, 2007 Dec , 33, 421-31

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/19669528


Abstract
Kinetics of facilitated ion transport through planar bilayer membranes are normally analyzed by electrical conductance methods. The additional use of electrical relaxation techniques, such as voltage jump, is necessary to evaluate individual rate constants. Although electrochemical impedance spectroscopy is recognized as the most powerful of the available electric relaxation techniques, it has rarely been used in connection with these kinetic studies. According to the new approach presented in this work, three steps were followed. First, a kinetic model was proposed that has the distinct quality of being general, i.e., it properly describes both carrier and channel mechanisms of ion transport. Second, the state equations for steady-state and for impedance experiments were derived, exhibiting the input-output representation pertaining to the model's structure. With the application of a method based on the similarity transformation approach, it was possible to check that the proposed mechanism is distinguishable, i.e., no other model with a different structure exhibits the same input-output behavior for any input as the original. Additionally, the method allowed us to check whether the proposed model is globally identifiable (i.e., whether there is a single set of fit parameters for the model) when analyzed in terms of its impedance response. Thus, our model does not represent a theoretical interpretation of the experimental impedance but rather constitutes the prerequisite to select this type of experiment in order to obtain optimal kinetic identification of the system. Finally, impedance measurements were performed and the results were fitted to the proposed theoretical model in order to obtain the kinetic parameters of the system. The successful application of this approach is exemplified with results obtained for valinomycin-K(+) in lipid bilayers supported onto gold substrates, i.e., an arrangement capable of emulating biological membranes.