PubMed 17526598
Referenced in: none
Automatically associated channels: Kv1.5
Title: Heterogeneity of hypoxia-mediated decrease in I(K(V)) and increase in [Ca2+](cyt) in pulmonary artery smooth muscle cells.
Authors: Oleksandr Platoshyn, Ying Yu, Eun A Ko, Carmelle V Remillard, Jason X-J Yuan
Journal, date & volume: Am. J. Physiol. Lung Cell Mol. Physiol., 2007 Aug , 293, L402-16
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/17526598
Abstract
Hypoxic pulmonary vasoconstriction is caused by a rise in cytosolic Ca(2+) ([Ca(2+)](cyt)) in pulmonary artery smooth muscle cells (PASMC) via multiple mechanisms. PASMC consist of heterogeneous phenotypes defined by contractility, proliferation, and apoptosis as well as by differences in expression and function of various genes. In rat PASMC, hypoxia-mediated decrease in voltage-gated K(+) (Kv) currents (I(K(V))) and increase in [Ca(2+)](cyt) were not uniformly distributed in all PASMC tested. Acute hypoxia decreased I(K(V)) and increased [Ca(2+)](cyt) in approximately 46% and approximately 53% of PASMC, respectively. Using combined techniques of single-cell RT-PCR and patch clamp, we show here that mRNA expression level of Kv1.5 in hypoxia-sensitive PASMC (in which hypoxia reduced I(K(V))) was much greater than in hypoxia-insensitive cells (in which hypoxia negligibly affected I(K(V))). These results demonstrate that 1) different PASMC express different Kv channel alpha- and beta-subunits, and 2) the sensitivity of a PASMC to acute hypoxia partially depends on the expression level of Kv1.5 channels; hypoxia reduces whole-cell I(K(V)) only in PASMC that express high level of Kv1.5. In addition, the acute hypoxia-mediated changes in [Ca(2+)](cyt) also vary in different PASMC. Hypoxia increases [Ca(2+)](cyt) only in 34% of cells tested, and the different sensitivity of [Ca(2+)](cyt) to hypoxia was not related to the resting [Ca(2+)](cyt). An intrinsic mechanism within each individual cell may be involved in the heterogeneity of hypoxia-mediated effect on [Ca(2+)](cyt) in PASMC. These data suggest that the heterogeneity of PASMC may partially be related to different expression levels and functional sensitivity of Kv channels to hypoxia and to differences in intrinsic mechanisms involved in regulating [Ca(2+)](cyt).