PubMed 19710531
Referenced in: none
Automatically associated channels: Kv1.3 , Kv1.5
Title: Ca2+-dependent functions in peptidoglycan-stimulated mouse dendritic cells.
Authors: Nguyen T Xuan, Ekaterina Shumilina, Nicole Matzner, Irina M Zemtsova, Tilo Biedermann, Friedrich Goetz, Florian Lang
Journal, date & volume: Cell. Physiol. Biochem., 2009 , 24, 167-76
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/19710531
Abstract
Peptidoglycans (PGN) from bacterial cell walls may modify the course of an infection with bacterial pathogens. The present study explored the effect of PGN on cytosolic Ca2+ activity, cytokine production and phagocytosis of mouse dendritic cells (DCs), essential cells in the initiation and direction of antigen-specific T cell responses. Exposure of DCs to PGN was followed by a rapid increase in cytosolic Ca2+ activity ([Ca2+]i), which was due to Ca2+ release from intracellular stores and influx of extracellular Ca2+ across the cell membrane. In DCs isolated from Toll-like receptor 2 (TLR2) deficient mice the effect of PGN on [Ca2+]i was dramatically impaired. The PGN-induced increase of [Ca2+]i was dependent on voltage-gated K+ (Kv) channel activity. PGN-induced increase of [Ca2+]i was significantly blunted by margatoxin (MgTx) and perhexiline maleate (PM), inhibitors of Kv1.3 and Kv1.5, respectively. PGN further stimulated the release of tumour necrosis factor alpha (TNFalpha), interleukin-12 (IL-12) and interleukin-10 (IL-10), an effect significantly blunted by PM and the specific blocker of store-operated Ca2+ channels SKF-96365. Moreover, phagocytic capacity was dramatically increased in PGN-stimulated DCs in the presence of either Kv channel inhibitors or SKF-96365. The observations disclose Ca2+ and Kv channel-dependent cytokine production and phagocytosis in PGN-stimulated DCs.