PubMed 19460073
Referenced in: none
Automatically associated channels: HCN1 , Kir2.1 , Slo1
Title: Synergistic effects of inward rectifier (I) and pacemaker (I) currents on the induction of bioengineered cardiac automaticity.
Authors: Yau-Chi Chan, Chung-Wah Siu, Yee-Man Lau, Chu-Pak Lau, Ronald A Li, Hung-Fat Tse
Journal, date & volume: J. Cardiovasc. Electrophysiol., 2009 Sep , 20, 1048-54
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/19460073
Abstract
Normal heart rhythms originate in the sinoatrial node. HCN-encoded funny current (I(f)) and the Kir2-encoded inward rectifier (I(K1)) counteract each other by respectively oscillating and stabilizing the negative resting membrane potential, and controlling action potential firing. Therefore, I(K1) suppression and I(f) overexpression have been independently exploited to convert cardiomyocytes (CMs) into AP-firing bioartificial pacemakers. Although the 2 strategies have been largely assumed synergistic, their complementarity has not been investigated.We explored the interrelationships of automaticity, I(f) and I(K1) by transducing single left ventricular (LV) CMs isolated from guinea pig hearts with the recombinant adenoviruses Ad-CMV-GFP-IRES-HCN1-AAA and/or Ad-CGI-Kir2.1 to mediate their current densities via a whole-cell patch clamp technique at 37 degrees C. Results showed that Ad-CGI-HCN1-AAA but not Ad-CGI-Kir2.1 transduction induced automaticity (181.1 +/- 13.1 bpm). Interestingly, Ad-CGI-HCN1-AAA/Ad-CGI-Kir2.1 cotransduction significantly promoted the induced firing frequency (320.0 +/- 15.8 bpm; P < 0.05). Correlation analysis revealed that the firing frequency, phase-4 slope and APD(90) of AP-firing LV CMs were correlated with I(f) (R(2) > 0.7) only when -2 >I(K1) >-4 pA/pF but not with I(K1) over the entire I(f) ranges examined (0.02 < R(2) < 0.4). Unlike I(f), I(K1) displayed correlation with neither the phase-4 slope (R(2)= 0.02) nor phase-4 length (R(2)= 0.04) when -2 > I(f) > -4 pA/pF. As anticipated, however, APD(90) was correlated with I(K1) (R(2)= 0.4).We conclude that an optimal level of I(K1) maintains a voltage range for I(f) to operate most effectively during a dynamic cardiac cycle.