PubMed 19645713

Referenced in Channelpedia wiki pages of: none

Automatically associated channels: Cav1.1 , Cav2.1 , Cav2.3 , ClvC4 , SK3 , Slo1

Title: Inhibition of vascular calcium-gated chloride currents by blockers of KCa1.1, but not by modulators of KCa2.1 or KCa2.3 channels.

Authors: W R Sones, N Leblanc, I A Greenwood

Journal, date & volume: Br. J. Pharmacol., 2009 Sep , 158, 521-31

PubMed link:

Recent pharmacological studies have proposed there is a high degree of similarity between calcium-activated Cl(-) channels (CaCCs) and large conductance, calcium-gated K(+) channels (K(Ca)1.1). The goal of the present study was to ascertain whether blockers of K(Ca)1.1 inhibited calcium-activated Cl(-) currents (I(ClCa)) and if the pharmacological overlap between K(Ca)1.1 and CaCCs extends to intermediate and small conductance, calcium-activated K(+) channels.Whole-cell Cl(-) and K(+) currents were recorded from murine portal vein myocytes using the whole-cell variant of the patch clamp technique. CaCC currents were evoked by pipette solutions containing 500 nM free [Ca(2+)].The selective K(Ca)1.1 blocker paxilline (1 microM) inhibited I(ClCa) by approximately 90%, whereas penitrem A (1 microM) and iberiotoxin (100 and 300 nM) reduced the amplitude of I(ClCa) by approximately 20%, as well as slowing channel deactivation. Paxilline also abolished the stimulatory effect of niflumic acid on the CaCC. In contrast, an antibody against the Ca(2+)-binding domain of murine K(Ca)1.1 had no effect on I(ClCa) while inhibiting spontaneous K(Ca)1.1 currents. Structurally different modulators of small and intermediate conductance calcium-activated K(+) channels (K(Ca)2.1 and K(Ca)2.3), namely 1-EBIO, (100 microM); NS309, (1 microM); TRAM-34, (10 microM); UCL 1684, (1 microM) had no effect on I(ClCa).These data show that the selective K(Ca)1.1 blockers also reduce I(ClCa) considerably. However, the pharmacological overlap that exists between CaCCs and K(Ca)1.1 does not extend to the calcium-binding domain or to other calcium-gated K(+) channels.