PubMed 17462994
Referenced in: none
Automatically associated channels: Kir6.2
Title: MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines.
Authors: Nadine Baroukh, Magalie A Ravier, Merewyn K Loder, Elaine V Hill, Ali Bounacer, Raphael Scharfmann, Guy A Rutter, Emmanuel Van Obberghen
Journal, date & volume: J. Biol. Chem., 2007 Jul 6 , 282, 19575-88
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/17462994
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that have been implicated in fine-tuning gene regulation, although the precise roles of many are still unknown. Pancreatic development is characterized by the complex sequential expression of a gamut of transcription factors. We have performed miRNA expression profiling at two key stages of mouse embryonic pancreas development, e14.5 and e18.5. miR-124a2 expression was strikingly increased at e18.5 compared with e14.5, suggesting a possible role in differentiated beta-cells. Among the potential miR-124a gene targets identified by biocomputation, Foxa2 is known to play a role in beta-cell differentiation. To evaluate the impact of miR-124a2 on gene expression, we overexpressed or down-regulated miR-124a2 in MIN6 beta-cells. As predicted, miR-124a2 regulated Foxa2 gene expression, and that of its downstream target, pancreatic duodenum homeobox-1 (Pdx-1). Foxa2 has been described as a master regulator of pancreatic development and also of genes involved in glucose metabolism and insulin secretion, including the ATP-sensitive K(+) (K(ATP)) channel subunits, Kir6.2 and Sur-1. Correspondingly, miR-124a2 overexpression decreased, and anti-miR-124a2 increased Kir6.2 and Sur-1 mRNA levels. Moreover, miR-124a2 modified basal and glucose- or KCl-stimulated intracellular free Ca(2+) concentrations in single MIN6 and INS-1 (832/13) beta-cells, without affecting the secretion of insulin or co-transfected human growth hormone, consistent with an altered sensitivity of the beta-cell exocytotic machinery to Ca(2+). In conclusion, whereas the precise role of microRNA-124a2 in pancreatic development remains to be deciphered, we identify it as a regulator of a key transcriptional protein network in beta-cells responsible for modulating intracellular signaling.